نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله درباره سیستم اعداد مانده‌ای (باقیمانده)

اختصاصی از نیک فایل مقاله درباره سیستم اعداد مانده‌ای (باقیمانده) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

فهرست

عنوان صفحه

1-1) مقدمه 2

2-1) عملیات ریاضی 7

1-2-1) معکوس ضرب 10

3-1) سیستم اعدادمبنای در هم وابسطه 12

4-1) تبدیل اعداد به سیستم اعداد مانده‌ای و برعکس 22

1-4-1-) تبدیل اعداد از سیستم باینری به سیستم مانده‌ای 24

5-1) انتخاب پیمانه 26

سیستم اعداد مانده‌ای (باقیمانده)

سیستم اعداد مانده‌ای یک سیستم اعداد صحیح است، که مهمترین ویژگی‌اش بطور ذاتی انتقال رقم نقلی مجازی در جمع و ضرب و تفریق‌هاست، همچنین نتجه جمع و تفریق و ضرب اعداد ما در مرحله اول بدون در نظر گرفتن طول اعداد مشخص می‌شود، متأسفانه در سیستم اعداد مانده‌ای عملیات ریاضی دیگری مانند تقسیم و مقایسه و شناسایی علامت خیلی پیچیده و کند هستند از مشکلات دیگر سیستم اعداد مانده‌ای این است که چون با سیستم اعداد صحیح کار می‌کند در نتیجه نمایش اعداد اعشاری در سیستم اعداد مانده‌ای خیلی ناجور است با توجه به خواص سیستم اعداد مانده‌ای نتیجه می‌گیریم که در اهداف عمومی کامپیوترها (ماشین حساب‌ها) به صورت کاملاً جدی نمی‌تواند مطرح بشود. بهرحال ، برای بعضی از کاربرها که اهداف خاصی دارند مثل بسیاری از انواع فیلترهای دیجیتال، تعداد جمع و ضرب‌هایی که اساساً بزرگتر تعداد و درخواست بزرگی دامنه و شناسایی سرریز، تقسیم و شبیه این‌ها، سیستم اعداد باقیمانده خیلی جذاب و جالب می‌تواند باشد.

1-1) مقدمه

سیستم اعدادمانده‌ای اساساً بوسیله یک مبنای چندتائی (N - تائی) و نه یک مبنای واحد مثل از اعداد صحیح مشخص می‌شود. هر کدام از ها باقیمانده پس از تقسیم یک عدد بر آن‌ها است.عدد صیح X در سیستم اعداد مانده‌ای بوسیلة یک N -تائی مثل نمایش داده می‌شود که هر یک عدد غیرمنفی صحیح است که در رابطة زیر صادق است:

 

 

X

0

1

0

1

0

1

0

1

0

1

0

1

0

2

0

1

2

0

1

2

0

1

2

0

1

2

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

جدول 1-1 نمایش اعداد در سیستم اعداد مانده‌ای به پیمانة‌

بزرگترین عدد صحیحی است بطوریکه معروف است به باقیمانده X به پیمانة Mi ، و در روش نوشتن اعداد هر دو و با یک مفهوم استفاده می‌شوند.

مثال 1-1 سیستم اعدادمانده‌ای 2- باقیمانده‌ای با پیمانه‌های را ملاحظه کنید در این سیستم نمایش عدد صحیح x=5 به صورت نمایش داده می‌شود که و از رابطه‌های زیر بدست می‌آیند.

چونکه

چونکه

بنابراین در این سیستم اعداد مانده‌ای با پیمانه‌های و عدد صحیح 5 به صورت (2,1) نشان داده می‌شود.

عدد X لزوماً نباید یک عدد صحیح مثبت باشد بلکه می‌تواند عدد صیح منفی هم باشد برای مثال اگر X=-2 باشد آنگاه


دانلود با لینک مستقیم


مقاله درباره سیستم اعداد مانده‌ای (باقیمانده)

دانلود پاورپوینت ریاضی هفتم مبحث اعداد صحیح - 8 اسلاید

اختصاصی از نیک فایل دانلود پاورپوینت ریاضی هفتم مبحث اعداد صحیح - 8 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضی هفتم مبحث اعداد صحیح - 8 اسلاید


دانلود پاورپوینت ریاضی هفتم مبحث اعداد صحیح - 8 اسلاید

 

 

 

نمایش اعداد صحیح روی محور اعداد :هر عدد یک حرکت روی محور اعداد صحیح می باشد .حرکت ها را از نقطه ی صفر شروع می کنیم،عدد اول ،حرکت اول و عدد دوم،حرکت دوم می باشد و مقصد به عنوان جواب جبری است

مناسب برای دانش آموزان و دبیران و اولیا.

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضی هفتم مبحث اعداد صحیح - 8 اسلاید

تحقیق درمورد نظریه اعداد

اختصاصی از نیک فایل تحقیق درمورد نظریه اعداد دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 43

 

نظریه اعداد:

بعد از دوران یونان باستان، نظریه اعداد در سده شانزدهم و هفدهم با زحمات ویت Viete، باشه دو مزیریاک Bachet de Meziriac، و بخصوص فرما دوباره مورد توجه قرار گرفت. در قرن هجدهم اویلر و لاگرانژ به قضیه پرداختند و در همین مواقع لوژاندرLegendre (1798)و گاوسGauss (1801) به آن تعبیر علمی بخشیدند. در ۱۸۰۱ گاوس در مقاله Disquisitiones Arithmeticæ حساب نظریه اعداد مدرن را پایه گذاری کرد.

چبیشف Chebyshev (1850) کران‌هایی برای تعداد اعداد اول بین یک بازه ارائه داد. ریمانRiemann (۱۸۵۹) اظهار کرد که حد تعداد اعداد اول از یک عدد داده شده تجاوز نمی‌کند. (قضیه عدد اول) و آنالیز مختلط را در تئوری تابع زتای ریمان Riemann zeta functionگنجاند. و فرمول صریح تئوری اعداد اولexplicit formulae of prime number theory را از صفرهای آن نتیجه گرفت. تئوری همنهشتی congruences از Disquisitiones گاوس شروع شد. او علامت‌گذاری زیر را پیشنهاد کرد: mod(c)

چبیشف در سال ۱۸۴۷ به زبان روسی کاری را در این زمینه منتشر کرد و سره Serret آن را در فرانسه عمومی کرد. بجای خلاصه کردن کارهای قبلی، لوژاندر قانون تقابل درجهٔ دوم را گذاشت. این قانون از استقراء کشف شد و قبلاً اویلر آن را مطرح کرده بود. لوژاندر در کتاب تئوری اعداد Théorie des Nombres (1798) برای حالت‌های خاص آن را ثابت کرد. جدا از کارهای اویلر و لوژاندر، گاوس این قانون را در سال ۱۷۹۵ کشف کرد و اولین کسی بود که یک اثبات کلی ارائه داد. کوشی Cauchy؛ دیریشله Dirichlet (که مقاله Vorlesungen über Zahlentheorie) او یک مقاله کلاسیک است؛ جکوبی Jacobi که علامت جکوبی Jacobi symbol را معرفی کرد؛ لیوویل Liouville ؛ زلر Zeller ؛ آیزنشتین Eisenstein؛ کومرKummer و کرونکر Kronecker نیز در این زمینه کارهایی کرده‌اند. این تئوری تقابل درجه دوم و سوم cubic and biquadratic reciprocity را شامل می‌شود (گاوس؛ جکوبی که اولین بار قانون تقابل درجه سوم cubic reciprocity را ثابت کرد ؛ و کومر).

نمایش اعداد با صورت درجه دوم دوتایی binary quadratic forms مدیون گاوس است. کوشی، پوانسو Poinsot (1845)، لوبکLebesque (1859-1868) و بخصوص هرمیت Hermite به موضوع چیزهایی افزوده‌اند. آیزنشتاین در تئوری صورت‌های سه‌گانه پیشتاز است، و تئوری فرم‌ها theory of forms به طور کلی مدیون او و اچ. اسمیتH. J. S. Smith است. اسمیت دسته بندی کاملی از صورتهای سه گانه انجام داد و تحقیقات گاوس در مورد صورت‌های درجه دوم حقیقی به فرمهای مختلط افزود. جستجوهایی در مورد نمایش اعداد به صورت جمع ۴، ۵، ۶، ۷، ۸ مربع توسط آیزنشتاین ادامه یافت و اسمیت آن را کامل کرد.

دیریشله اولین کسی بود که در یک دانشگاه آلمانی در این مورد سخنرانی کرد. او در مورد بسط قضیه اویلر که می‌گوید:

که اویلر و لوژاندر برای 04 3 = n آن را ثابت کردند و دیریشله نشان داد که: z5 y5 x5 +.

بین نویسندگان فرانسوی بورل Borel و پوانکاره Poincare ذهن قوی داشتند و تانریTannery و


دانلود با لینک مستقیم


تحقیق درمورد نظریه اعداد

پاورپوینت آموزش اعداد ریاضی (1 تا 10)

اختصاصی از نیک فایل پاورپوینت آموزش اعداد ریاضی (1 تا 10) دانلود با لینک مستقیم و پر سرعت .

پاورپوینت آموزش اعداد ریاضی (1 تا 10)


پاورپوینت آموزش اعداد ریاضی (1 تا 10)

آموزش اعداد ریاضی از 1 تا 10به صورت پاورپوینت. اعداد و تصاویر متحرک . و حتی کشیدن چوب خط  هم آموزش داده می شود.


دانلود با لینک مستقیم


پاورپوینت آموزش اعداد ریاضی (1 تا 10)