نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

خواص و کاربردهای اکسید نیکل (NiO)

اختصاصی از نیک فایل خواص و کاربردهای اکسید نیکل (NiO) دانلود با لینک مستقیم و پر سرعت .

خواص و کاربردهای اکسید نیکل

مقدمه ای کامل و جامع برای نوشتن پایان نامه در رشته های شیمی، فیزیک، نانوفیزیک و نانوشیمی

26 صفحه فایل ورد - منابع 67 مقاله ISI با فهرست مطالب، جدولها و شکلها با رعایت تمام نکات نگارشی

 payannameht@gmail.com

 

مقدمه

اکسید نیکل یکی از موادی است که به ویژه در پوشش های آبکاری در صنعت برای جلوگیری از اکسیداسیون سطوح فلزات و یا به عنوان کاتالیست به طور سنتی استفاده شده است و در دهه های اخیر نیز به دلیل کاربردهای گسترده به عنوان یک نیمرسانای شفاف نوع-p در قطعات اپتوالکترونیک، حسگرهای لایه نازک، دیودهای گسیلنده نوری، سلول های خورشیدی حساس به رنگ و سلول های سوختی و قطعات الکتروکرومیک، مورد توجه بسیاری از پژوهشگران قرار گرفته است. اکسید نیکل (NiO) دارای یک ساختار مکعبی سنگ نمکی (کلرید سدیم) با پارامتر شبکه ۴/۱۷۷ آنگستروم  است. در سالهای اخیر، لایه های اکسید نیکل نیز به دلیل خواص الکتریکی، اپتیکی و مغناطیسی قابل قبول و پایداری شیمیایی فوق العاده شان، بسیار مورد توجه قرار گرفته و محدوده کاربردی وسیعی در زمینه های مختلف پیدا کرده اند.
در ادامه به بررسی خواص مختلف و ویژگی های اکسید نیکل و اهمیت و کاربردهای مهم آن می پردازیم.


فهرست مطالب
۱-۱- مقدمه
۲-۱- نیکل
۳-۱- اکسید نیکل
۱-۳-۱- معرفی شبکه ساختاری اکسید نیکل
۲-۳-۱- ساز و کار رسانش در اکسید نیکل
۴-۱- کاربردها
۱-۴-۱- کاربردهای میکروالکترونیکی
۲-۴-۱- لایه های الکتروکرومیک
۳-۴-۱- حسگرهای گازی
۴-۴-۱- سلول های سوختی کربنات مذاب
۵-۴-۱- خازن های الکتروشیمیایی
۶-۴-۱- کاتالیست
۷-۴-۱- ترمیستورهای با ضریب دمایی منفی 
۸-۴-۱- حسگرهای تابش گاما 
۹-۴-۱- سلول های خورشیدی حساس به رنگ 
مراجع


دانلود با لینک مستقیم


خواص و کاربردهای اکسید نیکل (NiO)

خواص و کاربردهای آلومینا نانو ذرات اکسید آلومینیوم

اختصاصی از نیک فایل خواص و کاربردهای آلومینا نانو ذرات اکسید آلومینیوم دانلود با لینک مستقیم و پر سرعت .

خواص و کاربردهای آلومینا نانو ذرات اکسید آلومینیوم

مقدمه ای کامل و جامع وبسیار مناسب برای پایان نامه ۳۰ صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

 

payannameht@gmail.com

فایل مرتبط:

مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانو ذرات آلومینا

۱-۲- آلومینا
اکسید آلومینیم یا آلومینا پودری سفید رنگ است که رطوبت هوا را جذب می کند و در آب و اسیدها نامحلول می باشد. در طبیعت به وفور و اغلب به صورت هیدروکسیدهای ناخالص یافت می¬شود. بیشتر فرم های تجارتی آن خلوص بالای ۹۹% دارند. متداول ترین ناخالصی های اکسید آلومینیم، سیلیس ( ۱/۰ % )، اکسید تیتانیوم ( ۰۱/۰ % ) و اکسید آهن III ( ناچیز ) می باشن.
اکسید آلومینیوم یک خانواده از ترکیبات غیرآلی با فرمول شیمیایی Al2O3 است. این اکسید، یک اکسید آمفوتر مهم است و به طور مثال در مقابل اسیدها و بازها به صورت زیر واکنش می دهد.
اکسید آلومینیوم نام های تجاری متنوعی مانند آلومینا، کوراندوم و…. دارد. نام های تجاری متنوع اکسید آلومینیوم نشان دهنده گستره وسیع استفاده از این ماده در صنعت است. استفاده عمده از اکسید آلومینیوم برای تولید فلز آلومینیوم است. کوراندوم عمده ترین فرم ساختاربلوری اکسید آلومینیوم است که در طبیعت وجود دارد. یاقوت سرخ و یاقوت کبود سنگ های گرانبهایی هستند که از کوراندوم تشکیل شده اند. علت وجود رنگ های متنوع در اینگونه آلومینا (کوراندوم) در اثر وجود ناخالصی هاست. یاقوت سرخ، رنگ قرمز خود را به دلیل وجود ناخالصی کروم بدست آورده است. یاقوت کبود به رنگ های مختلفی در می آید، که این تنوع رنگ به خاطر ناخالصی های مختلف مانند آهن و تیتانیم بوجود می آید.

۱-۳-۱- فاز α-آلومینا
- آلومینا (کوراندوم)، شفاف و بی‌رنگ و شکل تک بلوری آن به نام یاقوت کبود (سفایر) شناخته شده است. یاقوت همان آلومینا آلائیده شده با مقدار کمی کروم است و سنگ جواهر یاقوت کبود (سفایر)، آلومینا ترکیب شده با آهن و تینانیوم است.
فاز با ظرفیت‌های e63/2+ برای آلومینیوم و e72/1- برای اکسیژن، مانند دیگر فازهای آلومینا، یونی می‌ باشد. ساختار کوراندوم همانند اکسیدهای سه ظرفیتی دیگر مثل Cr2O3، Ti2O3 ، و Fe2O3 می باشد. …

۱-۳-۲- فاز θ-آلومینا
فاز θ-آلومینا شبه پایدار و در حدود ˚C1050 به فاز α تبدیل می شود. چگالی این فاز Kg/m23600 می باشد که در مقایسه با فاز α (Kg/m24000) کمتر است. ساختار θ بر پایه شبکه fcc اکسیژن است که در درون این پیکر بندی اکسیژن، نیمی از یون های آلومینیوم جاهای خالی اکتا هدرال را اشغال می کنند و نیمی دیگر جاهای تترا هدرال (با ۴ همسایه اکسیژن) را پر می کنند……

-۳-۳- فاز γ-آلومینا
به علت انرژی سطحی کم و در نتیجه مساحت سطحی موثر زیاد، γ-آلومینا به طور وسیعی به عنوان محافظ کاتالیستی استفاده می شود. در کاربردهای دمای بالا، یک مشکل استفاده از γ-آلومینا این است که در دمای C˚۸۰۰-۷۰۰ این فاز به فاز θ تبدیل می شود. ساختار γ-آلومینا دارای دو شباهت اصلی به فاز θ است. در این ساختار، شبکه اکسیژن، fcc و مخلوطی از اکتا و تتراهدرال برای یون های آلومینیوم است. با این وجود …

فهرست مطالب

فصل اول: خواص و کاربردهای آلومینا
۱-۱- معرفی آلومینیوم ۱
۱-۲- آلومینا ۲
۱-۳- فازهای آلومینا ۳
۱-۳-۱- فاز α-آلومینا ۵
۱-۳-۲- فاز θ-آلومینا ۷
۱-۳-۳- فاز γ-آلومینا ۸
۱-۴- تولید آلومینا ۹
۱-۴-۱- روش بایر برای تولید آلومینا ۱۰
۱-۵- خواص آلومینا ۱۰
۱-۶- کاربردهای آلومینا ۱۳
۱-۶- ۱ دیرگدازها ۱۴
۱-۶-۲ کاربردهای الکتریکی ۱۵
۱-۶-۳- مواد ساینده ۱۶
۱-۶-۴- کاربردهای پزشکی ۱۷
۱-۶-۵- پاکسازی محیطی ۱۸
۱-۶-۶- صنعت خودرو ۱۸
۱-۶-۷- صنعت هوا فضا ۱۸
۱-۷- نانوتکنولوژی ۱۹
۱-۷-۱- تقسیم‌بندی نانوذرات ۲۱
۱-۷-۱-۱- نانوذرات سرامیکی ۲۱
۱-۷-۱-۲- نانوذرات فلزی ۲۲
۱-۷-۱-۳- نانوذرات نیمرسانا (نقاط کوانتومی) ۲۲
۱-۷-۲- نانو ذرات سرامیکی آلومینا ۲۲
۱-۷-۲-۱- برخی از مهمترین کاربردهای نانوذرات آلومینا ۲۳


دانلود با لینک مستقیم


خواص و کاربردهای آلومینا نانو ذرات اکسید آلومینیوم

دانلود مقاله رنگیزه سبز اکسید کروم

اختصاصی از نیک فایل دانلود مقاله رنگیزه سبز اکسید کروم دانلود با لینک مستقیم و پر سرعت .

 

 ) مقدمه
رنگیزه سبز اکسید کروم به علت عملکرد عالی اش در رنگ سبز، مقاومت فرسایش، مقاومت خوردگی و مقاومت شیمیایی اش کاربرد وسیعی در کاشی سازی، جلاکاری، رنگ آمیزی، پلاستیک و مواد ساختمانی پیدا می کند.
در حال حاضر، تولید صنعتی رنگیزه سبز اکسیذ کروم عمدتاً دو مسیر فنی را به کار می گیرد: یکی کاستن با ، به دیگری تجزیه حرارتی برای پروسه نخست، محتوای سولفور به عنوان ناخالصی در محصولی نهایی و کاربرد جامع از محصول فرعی حاوی لازم است به درستی تجزیه شود. برای پروسه دوم، آلودگی محیطی حاصل از غبار حاوی اغلب جدی است.
در سالهای اخیر، پروسه های متعدد جهت آماده کردن رنگیزه های سبز اکسید کروم با کیفیت بالا با ملاحظه خاص حفاظت از محیط زیست تولید یافته اند. Blonski و دیگران نوعی رنگیزه ی سبز اکسید کروم جنگی با ساختار بلورین کوراندوم – هماتیت، با مقادیر نسبتا! کم CIE – Y و انعکاس زیاد نزدیک ماوراء قرمز را به دست آوردند. Wilhelm و دیگران نوعی سبز اکسید کرومی با محتوای کم هگزا و لنت کرومیوم را با افزودن 0.5 – 10.0 wt% از آماده کردند. سبز اکسید کرومی با تعداد آب 10 – 40 g / 100g توسط Rademachers و دیگران از طریق افزودن سولفات، پلی فسفات ، پلی آکریلات یا مخلوطی از آنها در مقادیری از 2 . 0 wt % - 0 . 1 تهیه شد. Munoz دیگران رنگیزه سبز رنگ دوستدار محیط زیستی را بر مبنای محلول جامد با محتوای اندکی از سنتز کردند. Berry و دیگران Lazan و دیگران رنگیزه سبز رنگ اکسید کروم را از آب زباله چرم به طورجداگانه، تهیه کردند.
در دهه 1970 ، Mansmann و دیگران و Hahnkamm و دیگران متد کاهش هیدروژن را برای تهیه کردن رنگیزه های سبز رنگ اکسید کروم مطرح کردند. مواد خام معرفی هگزا و لنت کرومیوم (به شکل ، ، ، ) و گاز شکل گرفته از نمک نظیر Br2 , HCI , CL2 یا HBr هستند. کاهش و ما تا حد 900 – 1600 درجه سانتیگراد است، که از احتراق هیدروژن در حضور اکسیژن فراهم می شود . این پروسه نسبتاً ساده است و رنگیزه های سبز اکسید کرومی با کیفیت در راکتوری واحد به دست می آیند. هر چند، فلز قلیلی ارزشمند Na یا k ، در مواد خام به محصول فرعی NaCl , NaBr , KCl , KBr کم ارزش تنزل می یابد؛ و کنترل دقیق هیدروژن و اکسیژن برای جلوگیری از انفجار مساله فرآوری دشواری دارد، نه این که بگوییم مشکل در دسترس بودن ماده راکتور برای تحمل و تاب آوردن در مقابل حد واسط شدیداً زنگ زننده KOrl یا NaOH تحت دمای زیاد واکنش است. برری های تجربی مربوطه در مقاله پیدا نشده اند.
Bai و دیگران متد کاهش هیدروژنی جدید را مطرح کردند که با متد مطرح شده ی Mansmann و دیگران Hahnkamm و دیگران، برای تولید سبز اکسید کرومی تلفیق شده در پروسه متالوژیکی سبز خاک معدن کرومیت، تفاوت داشت. محصول حد واسط به شکل CrOOH اولین بار در دمای کم 300 – 800 C تولید شد و بعد مرحله تجزیه حرارتی برای تبدیل CrOOH به Cr2O3 فراهم شد. این متد کاهش هیدروژنی جدید آلودگی محیطی ناشی از محصولات فرعی حاوی را بسیار کاهش داد، و به طور موثری به بازیافت محصول فرعی NaOH یا KOH به انتهای قدامی دست پیدا کرد. هرچند ، عملکرد رنگی محصولات نهایی Cr2O3 پروسه جدید در پایین استاندادرهای تجارتی قرار داشت، پس به برآوردها و اندازه گیری های بیشتری نیاز داشت.
این بررسی به منظور بهبود عملکرد رنگی محصول سبز رنگ اکسید کروم است که از طریق متد کاهش هیدروژن Bai و دیگران آماده شده، با اتخاذ یک مرحله ی دیگر فعال شده ای که Ba , AI را در هم ادغام می کند تا بر ساختار میکروسکوپی و تجزیه فازی Cr2O3 جهت ارتقای عملکرد رنگ اش تاثیر گذارد.
عملکرد رنگ به لحاظ کمی مطابق سیستم رنگی سنجی CIE - L*a*b* اندازه گیری شد، که در این سیستم CIE – L* نماینده میزان روشنی و تیرگی رنگ در مقیاس گسترده شده از سفید (L* = 100) تا سیاه ( L* = 0) CIE – a* نشان دهنده مقیاس گسترده شده از سبز ( - a*) و CIE – b* بیانگر مقیاس گسترده شده از محور آبی ( - b*) تا زرد ( + b*) است.
پارمترهای C* و برای اندازه گیری عملکرد رنگ کاربرد دارند.
برای رنگیزه سبز اکسید کرومی تجارتی ، رنگ سبز معمولاً به عنوان a*< -20 ، L* = 45 – 50
C* = 28 – 30 , b*>20 است . ارزش C* هم با ارزش L* بر تاثیرات رنگی رنگیزه اکسید کروم وابسته است؛ برای مثال ، وقتی L* به 50 نزدیک می شود، ارزش C* به صورت متناسب با آن به 30 نزدیک می شود.
2 ) آزمایش
K2CrO4 که در این کار استفاده شده از درجه تحلیل ساخته شده توسط شرکت Tianjin Fu Chen از چین، بود و خلوص گاز هیدروژن مصرفی 99.99% 7/7 بود. کاهش گاز – جامد در کوره لوله با کنترل کننده قابل برنامه ریزی دما انجام گرفت یک قایق نیکلی، بارگیری شده با ذرات K2CrO4 غربال 100 – 150 اول در لوله یا کوره قرار داده شد. بعد هیدروژن در درصد جریان ثابت به لوله یا مجرا وارد شد، در حالی که دمای واکنش زیاد می شد و به مدت 1 ساعت برای پیشرفت واکنش در دمای حدود 450 C نگهداشته شد، و سپس کوره به صورت طبیعی تا حد دمای محیطی خنک شد. محصول کاهش با آب مقطر چندین مرتبه lixivate شد تا اجزای محلول به طور کامل حذف و جدا شوند. حد واسط حاصله در دمای 105 C به مدت 12 ساعت خشک شد.
نمونه های اولیه مورد استفاده برای sintering با توجه به اصول ذیل به ترتیب با میان مرحله ای دمای فوق با dope . وزن لازم به عنوان ماده افزودنی اول در حجم مناسب آب خالص تجزیه شد و حد واسط یا میان مرحله بعد با حجم معمولی از محلول آبدار آمیخته و به وطر یکنواخت پراکنده شد، به عبارت دیگر، حدوداً 20 میلی لیتر محلول آبدار برای 100 گرم پودر میان مرحله ای. بعد، آمیخته و مخلوط های پودر میان مرحله ای و محلول آبدار در هوا در کوره لفاف پیچ الکتریکی در دمای 950 C به مدت 1.5 ساعت sintere شد. پس از sintering ، پودرهای حاصله با آب مقطر چندین مرتبه لاکزیویت شد، در خلأ خشک و در غربال شد.
ساختار میکروسکوپی و ریخت شناسی نمونه های آماده شده Cr2O3 با محتویات متفاوت Al و Ba توسط میکروسکوپ اسکن کننده الکترونی (SEM) تجزیه و تحلیل شد. فاز نمونه های Cr2O3 آماده شده توسط انکسار پودر اشعه ایکس (XRD ) با یک انکسارسنج Rigaku با استفاده از انعکاس CuKa تجزیه و تحلیل گردید.
تحلیل کمی ریخت شناسی و ساختار میکروسکوپی Cr2O3 آماده شده به وسیله FEI SIRION 200/INCA آکسفورد (USA / UK) اجرا شد.
ارزش های سه محرکی پارامترهای CIE - L*a*b* برای نمونه های Cr2O3 و نمونه های Cr2O3 استاندارد تجارتی روی یک رنگ سنج ناهمسانی اتوماتیک SC – 80C با یک D65 ، و دقت اندازه گیری + 0.01 اندازه گیری شده، و داده های عملکرد رنگ در سیستم رنگ سنج CIE - L*a*b* اعلام شدند. برای هر پارامتر رنگ سنجی نمونه ها، سه مقدار اندازه گیری شد و میانگین شان انتخاب شد. معمولاً ، برای یک نمونه فرضی، انحراف استاندارد ارزشهای اندازه گیری شده CIE - L*a*b* کمتر از 0.10 است، و انحارف استاندارد نسبتی بیش از 0.8% نیست، که بیان می کند خطای اندازه گیری نادیده گرفته می شود.
طیف های جذب الکترونی با به کارگیری طیف نورسنج ، با اسکن 0.5nm در گستره طیفی 400 تا 800 نانومتر با استفاده از سولفات باریوم به عنوان مرجع، اندازه گیری شد.
ترکیب عنصری نمونه ها روی پلاسمای جفت شده به صورت القایی Optima 5300 DV Perkin – Elmer (ICP - AES) اندازه گیری شد.
3 ) نتایج و بحث
1 . 3 ) عملکرد رنگ
نمونه های P1 و P2 رنگیزه سبز اکسید کروم صنعتی به عنوان استانداردهای ما (STD) انتخاب شدند، که نماینده محصول صنعتی و همین طور عملکرد رنگ بودند. در مقایسه با نمونه های استاندارد ، رنگ سبز اشباع تری با ارزش a* , L* کمتر و ارزش b* بیشتر مطلوب است. همانطور که در جدول 1 مشهود است، عملکرد رنگی نمونه s1 لازم است با تغییر دادن محتویات متفاوت Ba , Al بهبود یابد. ارزش b* تا بیش از 2 زمانی زیاد می شود که محتوی Al از 0 به 0.20wt% زیاد شود، ارزش L* زمانی تا بیش از 5 کم می شود که محتوی Ba از 0 تا 0.59 wt% زیاد شود. ارزش های C* , L* نمونه S6 ، که با 0.1wt% از Al و 0.55 wt % از Ba dope شده به ترتیب 50.04 و 30.66 بود، که به ارزش های STD خیلی نزدیک بود. هرچند، عملکرد رنگ زمانی بدتر شد که مقادیر اضافی Ba , Al و نمونه ها افزوده شد، به عبارتی ، برای نمونه های 55 , 53 کل ارزش های CIE - L*a*b* زمانی بدتر شد که نمونه ها به ترتیب با 1.30 wt% از Al و 1.01 wt از Ba dope شدند.
نمونه P1 : رنگیزه سبز رنگ اکسید کروم صنعتی از سازنده بیگانه یا خارجی که به عنوان یکی از نمونه های استاندارد انتخاب شده و با کاهش با تولید شد.
نمونه P2 : رنگیزه سبز رنگ اکسید کروم صنعتی از تولید کننده داخلی، که به عنوان نمونه های استاندارد دیگر انتخاب شده و از تجزیه حرارتی تولید می شود.
2 . 3 ) ترکیب و ناخالصی های شیمیایی
با توجه به بین المللی استانداردها برای رنگیزه سبز اکسید کروم تجارتی ، Cr2O3 نباید کمتر از 99.0 wt باشد. همان طور که در جدول 1 دیده می شود، اکثر نمونه های تهیه شده در این کار این پیش شرط را برآورده می کنند. محتوای Cr2O3 برای نمونه S6 علیرغم خوراندن ماده ای با Ba , Al هنوز تا 99.2 wt % زیاد است . افزودن Ba , Al بر محتوای بعضی ناخالصی های عمده نمونه ها اثر ندارد. محتوای k ، مهمترین ناخالصی در پروسه، در نمونه های تهیه شده زیر 0.1 wt% نگهداشته شد. با خالصی عمده دیگر، Fe ، باید به طور کامل از نمونه ها برداشته شود، همانطور که در ارزش C* نمونه های S7 ماده خورشید با 0.64wt% ، Fe دیده می شود، باید تا 23.16 باشد. طبق جدول 2 T hkvCd ]voa hkjrhg l[hc است برای نمونه S7 ، ارزشهای پارامترهای Racah برای B مقدار 459 و برای C 3960 است، که به شکل بارزی بیش از نمونه های دیگر نظیر S6 , S3 , S1 است.
جدول 2 – مقادیر و ارزش پارامترهای B و C و انرژی (E) برای انتقال الکترونی Cr (III) از حالت پایه ای
3 . 3 ) XRD
شکل 1 الگوی XRD نمونه های S1 (بدون Ba , Al) ، 1.30 wt ) S3 از (Al یا 1.01 wt% ) S5 از Ba) را نشان می دهد که با sintering میان مرحله ای دهای ماده خورانده شده با Ba , Al در 950 C به مدت 1.5 ساعت به دست آمد. S3 در مقایسه با نمونه S1 هیچ فاز دیگری را با 1.30wt% از Al نشان نی دهد و به طور ضمنی گویای آن است که Al اضافه شده باید وارد ساختار کریستالی Cr2O3 شود تا محلول یکدستی را شکل دهد که در دیاگرام فازی سیستم Cr2O3 – Al2O3 پیش بینی می شود. برای نمونه S5 ماده خورانده شده با 1.01 wt % از Ba ، پیک BaCr2O4 به عنوان فاز ثانویه ای پدیدار شد که عملکرد رنگ را با کاهش چشمگیر ارزش C* بدتر کرد.
4 . 3 ) ریخت شناسی
شکل 2 ریخت شناسی و بازنمایی EDX نمونه های sinter شده در 950 C به مدت 1.5 ساعت را برای سه نمونه S5 , S3 , S1 نشان می دهد. ریخت شناسی تمام نمونه ها زمانی به صورت هموار سطح باید پدیدار می شود که محتوای Al کمتر از (S2) 0.2 wt% باشد. هر چند، ریخت شناسی زمانی غیر منظم شد و ذرات بزرگ در آن نمایان شد که نمونه با 1.30 wt% از Al (به عبارتی مثل S3) ماده خور شود. چنین ذرات بزرگی محتوای بیشتری از Al و کمتری از Cr را دارا هستند، و همچنین وجود Ca , Si , Na به عنوان ناخالصی، که همانطور دیده می شود در اتصال EDX در شکل 2 قرار دارند. محتوای اضافی Al به تفکیک محلول، تغییر ریخت شناسی و بدتر شدن عملکرد رنگ می انجامد.
ریخت شناسی نمونه S4 ماده خور شده با 0.59 wt% از Ba هموار باقی ماند که به طور ضمنی دلالت برآن دارد که Ba باید به صورت یکنواخت پراکنده شده باشد. در حقیقت ، Ba را در نمونه S4 با تحلیل EDX می توان ردیابی کرد، هرچند تحلیل شیمیایی نشان داد که محتوای Ba به 0.59 wt% می رسد، محدوده ردیابی EDX نتیجه را توضیح می دهد.
برای نمونه S5 ، ماده خور شده با 1.01 wt% از Ba ، ذرات مسطح حجیم کوچک همراه با ذرات بزرگ وجود دارند، و بازنمایی EDX نشان می دهد Ba به صورت یکنواخت در ذرات کوچک پراکنده شده است، گرچه محتوای Ba در ذرات بزرگ بیش از محتئای آن در ذرات کوچک است . نتایج EDX نشان می دهد که Cr2O3 با فاز ثانویه BaCr2O4 کنار هم وجود دارند . می توان نتیجه گیری کرد که تقویت Ba در اصل به عنوان فاز ثانویه BaCr2O4 موجود در مناطق غنی سازی رخ داده ، و این که ذرات بزرگ از طریق co – sintering BaCr2O4 و Cr2O3 شکل می گیرند.
5 . 3 ) مکانیزم رنگ آمیزی Cr2O3 با خور شده با Ba , Al
موقعیت های گروه در طیف فرابنفش یا UV برای رنگ درک شده با چشمان انسان حیاتی هستند. پارامترهای متعددی نظیر پارامتر میدان کریستال و پارامترهای Racah و C , B که قابل استخراج از ارزشهای V3 , V2 , V1 هستند، برای توصیف مشخصات الکترونیکی کمپلکس ها یا ترکیب انتقال – عنصر به کار می روند. پارامتر با ، پارمتر Racah برای B با و پارامتر Racah برای C با بیان می شود.
شکل 3 طیف جذبی نمونه های Cr2O3 ماده خور شده با Ba , Al ، جذب بیشتر در منطقه مرئی و افزایش با مقادیر Ba , Al را نشان می دهد. طیف های نوری نمونه های Cr2O3 یک قلمبگی شدید را بالای 400nm به نمایش در می آروند. دو حداکثر جذب در در یک شانه در گستره 650 – 700 nm قابل فهم است. باندها در را می توان به انتقال و Cr(III) در سایت های هشت گوشه ای نسبت داد. این طیف ها ویژگی های خاص از Cr(III) را نمایش می دهند، به طور مثال باندها در در رنگیزه های دیگر حاوی Cr(III) نظیر مشاهده می شوند.
آن طور که در جدول 2 دیده می شود، داده های طیفی برای نمونه S1 به منتهی می شوند، در حالی که ارزش های پارامترهای به ترتیب است. استحکام میدان بلوری (= 10Dq) تمام نمونه ها اندکی تغییر یافت . هر چند، انرژی انتقال مجاز چرخش بین 21600 , 21 460 cm-1 با توجه به محتویات Ba , Al متغیر بود. پیک های جذب تغیر آبی هستند، که افزایش ارزش b* را نشان می دهند. ارزش پارمتر B Racah از 462 – 444 متغیر بود.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله    14صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله رنگیزه سبز اکسید کروم

تحقیق اکسید نیتروژن‌

اختصاصی از نیک فایل تحقیق اکسید نیتروژن‌ دانلود با لینک مستقیم و پر سرعت .

تحقیق اکسید نیتروژن‌


تحقیق اکسید نیتروژن‌

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:12

فهرست:

هدف‌ کاهش‌ مونوکسید کربن‌، اکسید نیتروژن‌ و هیدروکربن‌های‌ نسوخته‌

کاربرد سنسور اکسیژن‌ در موتور انژکتوری‌

از این‌ سنسور در کنترل‌ و پایین‌ نگه‌ داشتن‌ میزان‌ مونوکسید کربن‌، اکسید نیتروژن‌ و هیدروکربن‌های‌ نسوخته‌ می‌توان‌ استفاده‌ کرد

سنسور اکسیژن‌ (که‌ با نامهای‌ دیگر مانند سنسور O2 ، لامبدا سنسور و یا سنسور EGO معرفی‌ می‌شود) یکی‌ از مهمترین‌ سنسورها در موتور انژکتوری‌ است‌. شکل‌ آن‌ شبیه‌ یک‌ شمع‌ است‌ و در منیفولد اگزوز بین‌ توربو و مبدل‌ کاتالیست‌ قرار می‌گیرد. (مط‌ابق‌ شکل‌ 1).

هنگامی‌که‌ در دمای‌ عملکرد قرار می‌گیرد، مثل‌ یک‌ باتری‌ کوچک‌ عمل‌ می‌کند که‌ ولتاژ تولیدی‌ آن‌ ناشی‌ از اختلاف‌ غلظ‌ت‌ اکسیژن‌ موجود در اگزوز و اکسیژن‌ موجود در محیط‌ اط‌راف‌ است‌. با این‌ روش‌ آن‌ مقدار از اکسیژن‌ بخار شده‌ موجود در خروجی‌ را اندازه‌گیری‌ کرده‌ و به‌ ECM اجازه‌ می‌دهد تا احتراق‌ را متناسب‌ با گریدهای‌ مختلف‌ سوخت‌ مصرفی‌، تغییرات‌ ارتفاعی‌ (ناشی‌ از حرکت‌ خودرو در مسیر خود)، میزان‌ مصرف‌ سوخت‌ و... کنترل‌ کند


دانلود با لینک مستقیم


تحقیق اکسید نیتروژن‌