نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره ی گریسکاری در موتورهای الکتریکی

اختصاصی از نیک فایل تحقیق درباره ی گریسکاری در موتورهای الکتریکی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

گریسکاری در موتورهای الکتریکی

نویسنده: مهندس فرهاد بنویدی   ۱۳۸۵/۰۷/۲۷

در سال1992 میلادی, موسسه تحقیقات قدرت الکتریکی (EPRI) , برنامه ای را در زمینه روانکاری توسعه داد. امروزه برنامه مذکور به طور گسترده در بیشتر نیروگاههای هسته ای به کار گرفته می شود. جلوگیری از گریسکاری بیش از حد در فاصله میان تعویض یاتاقانها از اهداف اصلی این برنامه روانکاری است. در این مقاله به تشریح این مبحث پرداخته ایم.

تاریخچه مسئله گریسکاری بیش از حد الکتروموتورها, برای اولین بار در سال1988 میلادی در نیروگاههای اتمی ایالات متحده مورد توجه قرار گرفت. دراین سال چندین موتور و یاتاقان در نیروگاههای اتمی به دلیل مصرف بیش از حد گریس دچار خرابی شده بود. درسال1992 میلادی, واحد تعمیرات هسته ای EPRI برنامه ای به منظور تعمیرات الکتروموتورها, با تاکید بر اصول نگهداری پیش بینانه و پیشگیرانه منتشر ساخت. این برنامه با توجه به اندازه و نوع یاتاقانهای الکتروموتورها, روشهای تعمیراتی جامعی را توصیه می کند. بخشی از این برنامه تعمیراتی شامل پیشنهاداتی در مورد چگونگی گریسکاری یک الکتروموتور است. اجرای این برنامه, کاهش هزینه نیروی انسانی مورد نیاز را (برای تعمیرات) و کاهش خرابی یاتاقانها (به دلیل گریسکاری بیش از حد) در پی داشت وموجب شد تا صنایع مذکور بتوانند با اجرای آن در هزینه های خود صرفه جویی کنند. طراحی محفظه یاتاقان در بیشتر موتورهایی که دارای یاتاقانهای غلتشی قابل گریسکاری هستند دو نوع طراحی محفظه یاتاقان به چشم می خورد. بیشتر موتورها به صورت Same-Side (شکل2) ساخته می شود و تعداد کمتری نیز به صورت Flow-Through (شکل1) طراحی می شوند. شکل1- طراحی Flow-Through تنها در یاتاقانهای Open Face استفاده می شود. شکل2- در نوع Same-Side , محل ورود و خروج گریس در یک طرف بوده و با یاتاقانهای Open Face- Single Shielded و Double Shielded استفاده می شود. همانطوریکه در شکل2 مشاهده می شود, تنها راه خروج گریس, درپوش تخلیه است. چهارنوع اصلی یاتاقان 1- Open face bearing : این نوع از پوسته داخلی, خارجی, ساچمه ها و قفس ساچمه ها تشکیل شده است. این یاتاقان به دلیل نداشتن صفحات محافظ, گریس را درون خود حفظ نکرده و بنابراین برای روانکاری به حفره گریس نیاز دارد. 2- Single- shielded bearing : این یاتاقانها تنها در یک سمت دارای یک صفحه محافظ فلزی بوده و به طور معمول یاتاقان به گونه ای نصب می شود که سمت دارای صفحه فلزی رو به سیم پیچی موتور قرار می گیرد. این گروه نیز قابلیت روانکاری مجدد با گریس را داشته و فواصل گریسکاری آن نیز مشابه یاتاقانهای open-face است. 3- Double shielded bearing : در این یاتاقان, هر دو سمت یاتاقان دارای صفحه محافظ فلزی بوده که در نتیجه گریس را بین این دو صفحه نگه می دارد. شکاف هوای کوچکی که بین پوستة داخلی و صفحات محافظ وجود دارد اجازه می دهد که در فواصل طولانی, حجم مشخصی از روغن, بین گریس موجود در حفره و گریس موجود میان صفحات محافظ, در جریان باشد. در مورد اینکه آیا می توان این یاتاقان ها را گریسکاری کرد ابهام وجود دارد. تاکنون گریسکاری در یاتاقان های Double shielded با مشکلی مواجه نشده است. 4- Sealed bearings: این یاتاقانها به جز یک مورد استثنا, کاملاً شبیه Double shielded ها هستند. پوستر داخلی در این یاتاقانها در برابر آب بندها سُرخورده که در نتیجه موجب حذف شکاف هوا بین آب بندها و پوسته داخلی می شود. این یاتاقان نمی تواند مجدداً گریسکاری شود. خرابی های ناشی از گریس خرابی هایی که در ارتباط با مسایل گریسکاری در یاتاقانها روی می دهد دلایل مختلفی دارد که در زیر به آنها پرداخته شده است. - فقدان روانکاری: این حالت هنگامی رخ می دهد که یا حفره گریس در یاتاقان به طور صحیح با گریس پر نشده باشد, یا در زمان تعیین شده, یاتاقان گریسکاری نشود و یا روغن موجود در گریس به دلیل گرم شدن بیش از حد یاتاقان, تبخیر و خارج شود. - ناسازگاری گریسها: تغلیظ کننده گریسها از ترکیبات مختلفی مانند لیتیم یا پلی اوره تشکیل شده اند. تمامی گریسها با یکدیگر سازگار نیستند و این نکته که در طول عمر یاتاقان, از همان گریس اولیه یا گریسهای سازگار با آن استفاده شود از اهمیت خاصی برخوردار است. - گریس نامناسب: استفاده و بکارگیری گریس مناسب بسیار مهم است. در بعضی از شرایط و در بعضی از انواع یاتاقانها, گریسهای چندمنظوره کفایت می کند در حالیکه در مواردی, تنها گریسهای EP جوابگو هستند. انتخاب نادرست گریس در گریسکاری اول و یا گریسکاری مجدد, منجر به خرابی زودهنگام یاتاقان می شود. - تحت فشار قرار گرفتن بیش از حد صفحات محافظ یاتاقان: در زمان ورود گریس به داخل حفره گریس, حجم گریس و فشار حفره افزایش می یابد. در صورتی که اگر در حین گریسکاری مجدد, گریس به سرعت اضافه شود, صفحات محافظ یاتاقانهای Single shielded یا Double shielded آسیب خواهند دید. هنگامی که موتور در سرویس قرار می گیرد, گریس به دلیل گرما منبسط می شود. اگر حفره گریس کاملاً پر باشد, انبساط گرمایی منجر به فشار مخرب بر روی صفحات محافظ یاتاقان می شود. در چنین حالتی, صفحات محافظ تحت فشار از جای خود خارج شده یا صفحه محافظ بیرونی تحت فشار گریس به محفظه یاتاقان فشرده می شود که در نهایت به خرابی یاتاقان منجر می شود. (شکلهای6 و7) شکل6- خرابی ناشی از گریسکاری بیش از حد شکل7- صفحه محافظ به دلیل گریس بیش از حد تحت فشار قرار گرفته که در نتیجه محفظه آسیب دیده است. درون یک الکتروموتور که با گریس پر شده است چه می گذرد؟ اگر حفره گریس کاملاً پر باشد و در عین حال باز هم گریسکاری انجام شود, گریس اضافی به سمت فضای بین کلاهک یاتاقان و محور موتور حرکت کرده و در نهایت به درون موتور راه پیدا می کند. این پدیده باعث می شود تا گریس فضای انتهایی سیستم عایق را پر کرده و در نهایت منجر به خرابی عایق بندی و یاتاقان شود.(شکل8) شکل8- گریسکاری بیش از حد منجر به پر شدن داخل موتور با گریس شده است. ساچمه های یک یاتاقان همانند پمپهای بسیار ریز گرانروی عمل کرده که بر روی حجم محدودی از فیلم روغن بین ساچمه ها و پوسته می چرخند. هنگامی که گریس بیش از حد مورد نیاز باشد, توسط ساچمه ها به شدت به هم می خورد و در نتیجه موجب افزایش دمای عملیاتی و هدر رفتن انرژی شده و احتمال خرابی یاتاقان را افزایش می دهد. مسئله ای که در ارتباط با الکتروموتورها وجود دارد, این است که مسیر خروج گریس اضافی از حفره یاتاقان محدود است. شکلهای9 و10, دو نمونه از ابزارهایی که گریسکاری بیش از حد و فشار بیش از حد گریس حفره یاتاقان را محدود می کنند نشان می دهند. با استفاده از این اتصالات, دیگر به باز کردن درپوش تخلیه برای خارج ساختن گریس اضافی و کاهش فشار موجود نیازی نیست. در حال حاضر اتصالاتی که در شکل9 و10 نشان داده شده اند توسط شرکت Alemite تولید و به بازار عرضه شده و به صورت گسترده ای در نیروگاههای هسته ای بکار می رود. شکل9- این درپوش فشار شکن در صورتی که فشار بیش از 20 psi باشد اجازه افزودن گریس را نمی دهد. شکل10- دریچه درپوش تخلیه در صورتی که فشار به دلیل گریس اضافی بین1 تا5 psi باشد باز شده و گریس اضافی را خارج می کند. تخریب گریس تخریب گریس طی یک فرایند تدریجی اتفاق می افتد. گرچه عمده تخریب گریس زمانی اتفاق می افتد که موتور در حال کار است ولی زمان هایی که الکتروموتور در جا کار می کند نیز اتفاق می افتد. گریس می تواند به حالتهای مختلف و بنا به دلایلی خاص تخریب شود که عبارتند از: سفت شدن گریس: این حالت در فواصل زمانی طولانی و به دلیل جذب گرد و غبار و رطوبت یا اکسید شدن اتفاق می افتد. تخریب شیمیایی: تخریب شیمیایی گریس به دلیل گرمای بیش از حد ایجاد می شود. یکی از دلایل گرمای بیش از حد, گریسکاری بیش از حد است. عواملی که در تخریب گریس تاثیر گذارند عبارتند از:‌ - بارهای بیش از حد: الکتروموتورهایی که Side-Loaded بوده و به بیانی دیگر به صورت مستقیم و از طریق یک کوپلینگ به محور محرک متصل نشده اند نسبت به الکتروموتورهای Direct Coupled بار بیشتری را به یاتاقان ها اعمال می کنند. - جدایش روغن از گریس: این پدیده, بیشتر در مورد الکتروموتورهایی اتفاق می افتد که برای مدت زمان زیادی در جا کار می کنند. همچنین در مواردی که گریس بیش از حد بهم زده می شود نیز چنین پدیده ای رخ می دهد. البته عموماً با گذشت زمان نیز روغن به طور طبیعی از گریس جدا میشود. - سرعت دورانی یاتاقان: هر چقدر سرعت بالاتر باشد, گریس سریعتر تخریب می شود. - اندازه یاتاقان: هر چقدر یاتاقان بزرگتر باشد, گریس با سرعت بیشتری تخریب می شود. به طور معمول اندازه یاتاقان با توان الکتروموتور نسبت مستقیم دارد. - محیط کارگاه: در صورتی که دمای محیطی که الکتروموتور در آن قرار گرفته بیشتر از60 درجه سانتیگراد باشد, تخریب گریس شدت می یابد. تهیه برنامه- گریسکاری برای تدوین یک برنامه گریسکاری که تمامی الکتروموتورهای یک مجموعه صنعتی را در بر بگیرد, عوامل متعددی دخالت دارند. برای یک برنامه ریزی صحیح رعایت نکات زیر ضروری است. 1- نوع یاتاقانهای هر دو طرف الکتروموتورها را شناسایی کنید. به این ترتیب این موضوع که آیا یاتاقان قابل گریس کاری مجدد است یا نه, مشخص می شود. 2- باید مشخص شود که چه مقدار گریس در ابتدا استفاده شده است تا میزان فضای خالی برای گریسکاری های بعدی تعیین شود. 3- نوع گریس (EP-GP , سنتزی و ...) و در صورت امکان سازنده آن را مشخص کنید. 4- شرایطی ایجاد کنید تا اتصالات گریس- چه اتصالات شارژ گریس و چه اتصالات تخلیه گریس- در دسترس قرار گیرد. 5- اطراف اتصالات ورود و تخلیه گریس را تمیز کنید. 6- برای این برنامه یک مسئول تعیین کنید. احتمال اینکه یک برنامه بدون نیاز به یک مسئول مشخص به نتیجه برسد بسیار کم خواهد بود. روشهای گریسکاری با توجه به اینکه ساچمه های یاتاقان همانند پمپهای گرانروی بسیار ریز عمل می کنند و از آنجایی که گریس در هنگام گرم شدن شل تر می شود, باید هنگامی که الکتروموتور در حال کار است, یاتاقانها را گریسکاری کرد. در صورتی که این کار امکان پذیر نیست, بلافاصله پس از اینکه الکتروموتور از سرویس خارج و خاموش شد و تا زمانی که گریس هنوز گرم است, گریسکاری را انجام دهید. باید دانست که گرچه هیچ یک از این برنامه ها, مشکلات گریسکاری بیش از حد حفره گریسی را که قبلاً با گریس پر شده برطرف نمی کند ولی انجام مراحل زیر کمک می کند تا این مشکلات را به حداقل برسد. لازم به یادآوری است که مراحل زیر می بایست به ترتیب انجام شود: 1- ابتدا مطمئن شوید که گریس پمپ دستی حاوی مقدار مناسب گریس باشد. 2- اطراف اتصالات ورود و تخلیه گریس را تمیز کنید. 3- درپوش تخلیه گریس را باز کرده و در صورت امکان با استفاده از یک فرچه استوانه ای مقداری از گریس درون حفره گریس را برداشته و راه کوچکی برای خروج گریس باز کنید. اگر در پوش از نوع Plunger باشد نیازی به این کار نیست. 4- حال یاتاقان را گریسکاری کنید. باید گریسکاری را به آرامی انجام داد تا از افزایش فشار ناگهانی در حفره گریس جلوگیری شود. 5- در صورتی که گریسکاری در زمان خاموشی الکتروموتور انجام شود, بلافاصله بعد از گریسکاری می بایست موتور روشن شده تا با افزایش دمای یاتاقان, گریس اجازه انبساط یابد. در صورتی که درپوش تخلیه از نوع Plunger نیست حتماً باید تا انتها بازبماند. 6- بعد از اینکه گریس اضافی خارج شد, درپوش تخلیه را ببندید و گریسهایی که احتمالاً اطراف را آغشته کرده پاک کنید. معمولاً هر چند وقت یکبار باید یاتاقانها را گریسکاری کرد؟ اطلاعاتی که در این جا ارایه می شود براساس گزارش NP-7502 موسسه EPRI است که آن نیز براساس داده های طراحی و عملیاتی الکتروموتور تهیه شده است. این داده ها عبارتند از: 1- عملیات پیوسته 2- عملیات ناپیوسته 3- حالت موتور (آیا موتور در حالت Standby بوده یا در حالت خاموش) 4- نوع یاتاقان (یاتاقانها از نوع Single shielded, Open face هستند یا Double shielded (داخلی یا خارجی). مدلهای متفاوتی می توانند به عنوان یاتاقان داخلی و خارجی استفاده شوند. توجه کنید که یاتاقانهای Sealed هرگز نمی توانند مجدداً روانکاری شوند. 5- دور موتور 6- توان الکتروموتور- اسب بخار 7- چگونگی انتقال بار (انتقال نیرو از کنار در مقابل انتقال نیروی مستقیم توسط کوپلینگ) 8- دمای محیط (کمتر از60 درجه سانتیگراد یا بیشتر از60 درجه سانتیگراد) جدول1 برای یک نیروگاه هسته ای نسبتاً تمیز طراحی شده است. در صورتی که با محیط آلوده یا دارای گرد و غبار روبرو هستیم می باید تغییرات مورد نیاز را در فواصل زمانی توصیه شده انجام دهیم. برای الکتروموتورهایی که بصورت پیوسته در حال کار نیستند و گاهی اوقات متوقف می شوند, باید تنها ساعاتی را به عنوان مدت زمان عملیاتی به حساب آوریم که دستگاه در حال کار باشد. برای مثال در صورتی که یک الکتروموتور تنها در نیمی از یک زمان مشخص در سرویس است, بر طبق جدول1 زمان گریسکاری مجدد آن بین24 تا36 ماه توصیه می شود, ولی باید زمان گریسکاری مجدد آن را بین48 تا72 ساعت در نظر گرفت


دانلود با لینک مستقیم


تحقیق درباره ی گریسکاری در موتورهای الکتریکی

پاورپوینت موتورهای القایی تکفاز متعارف

اختصاصی از نیک فایل پاورپوینت موتورهای القایی تکفاز متعارف دانلود با لینک مستقیم و پر سرعت .

پاورپوینت موتورهای القایی تکفاز متعارف


پاورپوینت موتورهای القایی تکفاز متعارف

این فایل حاوی مطالعه موتورهای القایی تکفاز متعارف می باشد که به صورت فرمت PowerPoint در 63 اسلاید در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

فهرست
مقدمه
تئوری میدان گردان(قضیه لبلان)
بررسی کمی یک موتور القایی تکفاز
روشهای ایجاد گشتاور
مقایسه انواع منحنی های گشتاور – سرعت

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پاورپوینت موتورهای القایی تکفاز متعارف

تحقیق در مورد انواع موتورهای الکتریکی

اختصاصی از نیک فایل تحقیق در مورد انواع موتورهای الکتریکی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد انواع موتورهای الکتریکی


تحقیق در مورد انواع موتورهای الکتریکی

فرمت فایل :word (لینک دانلود پایین صفحه) تعداد صفحات 34صفحه


 

موتورهای القایی AC عمومی ترین موتورهایی هستند که در سامانه های کنترل حرکت صنعتی و همچنین خانگی استفاده می شوند.طراحی ساده و مستحکم , قیمت ارزان , هزینه نگه داری پایین و اتصال آسان و کامل به یک منبع نیروی AC امتیازات اصلی موتورهای القایی AC هستند.انواع متنوعی از موتورهای القایی AC در بازار موجود است.موتورهای مختلف برای کارهای مختلفی مناسب اند.با اینکه طراحی موتورهای القایی AC آسانتر از موتورهای DC است , ولی کنترل سرعت و گشتاور در انواع مختلف موتورهای القایی AC نیازمند درکی عمیقتر در طراحی و مشخصات در این نوع موتورهاست.

این نکته در اساس انواع مختلف , مشخصات آنها , انتخاب شرایط برای کاربریهای مختلف و روشهای کنترل مرکزی یک موتورهای القایی AC را مورد بحث قرار می دهد.

 اصل ساخت اولیه و کاربری

مانند بیشتر موتورها , یک موتورهای القایی AC یک قسمت ثابت بیرونی به نام استاتور و یک روتور که در درون آن می چرخد دارند , که میان آندو یک فاصله دقیق کارشناسی شده وجود دارد.به طور مجازی همه موتورهای الکتریکی از میدان مغناطیسی دوار برای گرداندن روتورشان استفاده می کنند.یک موتور سه فاز القایی AC تنها نوعی است که در آن میدان مغناطیسی دوار به طور طبیعی بوسیله استاتور به خاطر طبیعت تغذیه گر آن تولید می شود.در حالی که موتورهای DC به وسیله ای الکتریکی یا مکانیکی برای تولید این میدان دوار نیاز دارند.یک موتور القایی AC تک فاز نیازمند یک وسیله الکتریکی خارجی برای تولید این میدان مغناطیسی چرخشی است.

در درون هر موتور دو سری آهنربای مغناطیسی تعبیه شده است.در یک موتور القایی AC یک سری از مغناطیس شونده ها به خاطراینکه تغذیه AC به پیچه های استاتور متصل است در استاتور تعبیه شده اند.بخاطر طبیعت متناوب تغذیه ولتاژ AC بر اساس قانون لنز نیرویی الکترومغناطیسی به روتور وارد می شود (درست شبیه ولتاژی که در ثانویه ترانسفورماتور القا می شود).بنابر این سری دیگر از مغناطیس شونده ها خاصیت مغناطیسی پیدا می کنند.-نام موتور القایی از اینجاست-.تعامل میان این مگنت ها انرژی چرخیدن یا تورک (گشتاور) را فراهم  می آورد.در نتیجه موتور در جهت گشتاو بوجود آمده چرخش می کند.                                                                   
استاتور

استاتور از چندین قطعه باریک آلومنیوم یا آهن سبک ساخته شده است.این قطعات بصورت یک سیلندر تو خالی به هم منگنه و محکم شده اند(هسته استاتور) با شیارهایی که در شکا یک نشان داده شده اند.سیم پیچهایی از سیم روکش دار در این شیارها جاسازی شده اند.هر گروه پیچه با هسته ای که آن را فرا گرفته یک آهنربای مغناطیسی (با دو پل) را برای کار کردن با تغذیه AC شکل می دهد.تعداد قطبهای یک موتور القایی AC به اتصال درونی پیچه های استاتوربستگی دارد.پیچه های استاتور مستقیما به منبع انرژی متصل اند.آنها به صورتی متصل اند که با برقراری تغذیه AC یک میدان مغناطیسی چرخنده تولید می شود.

 


روتور

روتور از چندین قطعه مجزای باریک فولادی که میانشان میله هایی از مس یا آلومنیوم تعبیه شده ساخته شده است.در رایج ترین نوع روتور (روتور قفس سنجابی) این میله ها در انتهای خود به صورت الکتریکی و مکانیکی بوسیله حلقه هایی به هم متصل شده اند.تقریبا 90 درصد از موتورهای القایی دارای روتور قفس سنجابی می باشند و این به خاطر آن است که این نوع روتور ساختی مستحکم و ساده دارد.این روتور از هسته ای چند تکه استوانه ای با محوری که شکافهای موازی برای جادادن رساناها درون آن دارد تشکیل شده است.هر شکاف یک میله مسی یا آلومنیومی یا آلیاژی را شامل می شود.در این میله ها به طور دائمی بوسیله حلقه های انتهایی آنها همچنان که در شکل دو مشاهده می شود مدار کوتاه برقرار است.چون این نوع مونتاژ درست شبیه قفس سنجاب است , این نام برای آن انتخاب شده است.میله ای روتور دقیقا با محور موازی نیستند.در عوض به دو دلیل مهم قدری اریب نصب می شوند.


دانلود با لینک مستقیم


تحقیق در مورد انواع موتورهای الکتریکی

مقاله انواع موتورهای الکتریکی

اختصاصی از نیک فایل مقاله انواع موتورهای الکتریکی دانلود با لینک مستقیم و پر سرعت .

مقاله انواع موتورهای الکتریکی


مقاله انواع موتورهای الکتریکی

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:15

انواع موتورهای الکتریکی مقدمه

یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.

 

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

        انواع موتورهای الکتریکی موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC
  • موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.
موتورهای AC سه فاز:

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.


دانلود با لینک مستقیم


مقاله انواع موتورهای الکتریکی

تحقیق در مورد موتورهای الکتریکی

اختصاصی از نیک فایل تحقیق در مورد موتورهای الکتریکی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

فهرست

عنوان صفحه

مقدمه 2

موتورهای Dc 3

۱.۱ موتورهای میدان سیم پیچی شده 4

موتورهای یونیورسال 5

موتورهای AC 6

موتورهای AC تک فاز 6

موتورهای پله‌ای 9

موتورهای خطی 9

منابع 11

مقدمه

میدان مغناطیسی چرخنده به عنوان مجموعی از بردارهای مغناطیسی کوئل‌های سه‌فازه.

یک موتور الکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکترواستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای، چرخانه (روتور) به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور چرخانه به چرخانه اعمال می‌شود، می‌گردد.

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) چرخانه و بخش ثابت ایستانه (استاتور) خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین، هر کدام از بخش‌های چرخانه یا ایستانه می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیت هایی را در مدارس استفاده می‌کنند.

موتورهای Dc

یکی از اولین موتورهای دوار، اگر نگوییم اولین، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاه بجای ماده سمی جیوه، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه‌ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم‌پیچ) در سیم‌پیچی موتور یا با داشتن یک منبع ولتاژ متغیر، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای کششی نظیر لوکوموتیوها استفاده می‌کنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبک ها و کموتاتور، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً


دانلود با لینک مستقیم


تحقیق در مورد موتورهای الکتریکی