نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت ورق پلی کربنات

اختصاصی از نیک فایل پاورپوینت ورق پلی کربنات دانلود با لینک مستقیم و پر سرعت .

پاورپوینت ورق پلی کربنات


پاورپوینت ورق پلی کربنات

پاورپوینت ورق پلی کربناتکامل و جامع با 70 اسلاید و با ذکر منابع

 

حضور گروه های فنیل در زنجیر اصلی سبب سفتی و عدم انعطاف پذیری زنجیر پلی کربنات می شود که تاثیر زیادی بر روی خواص پلی کربنات دارد. بر هم کنش گروه های فنیل در زنجیر های مختلف سبب کندی حرکت زنجیرهای مولکولی می گردد که به نوبه خود مقاومت گرمایی خوبی را ایجاد می کند اما از طرفی سبب افزایش ویسکوزیته در حین فرآیند می شود. همچنین انعطاف پذیری کم زنجیر اصلی مانع از کریستال شدن و در نتیجه شفافیت پلی کربنات می شود. اما بزرگترین مزیت پلی کربنات مقاومت ضربه بسیار بالای آن است که دلیل آنرا نیز می توان وجود TGG به دلیل حضور گروه های جانبی متیل در ساختار آن دانست.


دانلود با لینک مستقیم


پاورپوینت ورق پلی کربنات

گزارش کارآموزی پتروشیمی خوزستان فرآیند تولید پلی کربنات

اختصاصی از نیک فایل گزارش کارآموزی پتروشیمی خوزستان فرآیند تولید پلی کربنات دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی پتروشیمی خوزستان فرآیند تولید پلی کربنات


گزارش کارآموزی پتروشیمی خوزستان فرآیند تولید پلی کربنات

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:93

فهرست مطالب:

-    فصل اول :
پلیمر و پلیمرهای مهندسی ..................................................................................... 12-5

-    فصل دوم :
پلی کربنات و خواص آن .............................................................................................. 21-14

-     فصل سوم :
فرآیندهای تولید پلی کربنات .......................................................................................34-23

-    فصل چهارم :
موارد مصرف پلی کربنات و بازار آن ............................................................................ 46-36

-    فصل پنجم :
شرح فرآیند کرخانه تولید پلی کربنات به روش Interface ................................ 62-48

-    فصل ششم :
بحث های تکمیلی ( شامل 9 بخش ) ....................................................................... 89-64

 

چکیده:

مفاهیم اساسی و نامگذاری پلیمر:
پلیمرها ترکیباتی هستند که از تکرارکم و بیش منظم تعداد زیادی از گروه های اتمی جور یا جوریه وجود می آیند.
این گروه های اتمی بوسیله پیوند های شیمیایی به یکدیگر اتصال دارند و زنجیر های طویل خطی یا با شاخه های جانبی بوجود می آورند.
پلیمرها را بر اساس ساختارشان به پلیمر های آلی ومعدنی وآلی – فلزی تقسیم می کنند .مطالعات زیادی درباره پلیمرهای آلی انجام گرفت و به همین دلیل ، پلیمرهای آلی بهترین مواد جهت بررسی  نظم و ترتیب گروه های اتمی در ساختار پلیمر می باشند .
ساده ترین پلیمر آلی پلی اتیلن (هیدروکربن سیر نشده ) با استفاده از واکنشهای افزایشی بدست             می آید .دو مولکول اتیلن با همدیگر ترکیب می شوند و تشکیل یک مولکول بوتن می دهند.
 
مادة اولیه اتیلن را مونومر می گویند و بوتن بدست آمده یک دیمر است محصولات حاصل از ترکیب سه مولکول و چهار مولکول اتیلن را به ترتیب تریمر و نترامر می گویند .
اگر n مولکول مونومر باهمدیگر ترکیب شوند تشکیل یک پلیمر می دهند.
 
گروه های اتمی تکرار شونده را که هر یک از آنها باقیمانده یک مونومر هستند «واحد های مونومر» می گویند .
یک مولکول بزرگ مرکب از واحدهای تکراری را ماکرو مولکول یا زنجیر پلیمر می خوانند . تعداد واحد های تکراری در زنجیر پلیمر را درجه پلیمر شدن می نامند و با حرف n یا p نشان می دهند.
حاصلضرب درجه پلیمر شدن n و جرم مولکولی مونومر M u برابر است با جرم مولکولی پلیمر  
 
درجه پلیمر شدن ممکن است ازچند واحد تا 10000-5000 یا بیشتر تغییر کند .
پلیمر هایی را که درجة پلیمر شدن آنها بسیار زیاد است «پلیمر سنگین » و پلیمر های با درجه پلیمر شدن پایین را «اولیگومر » می گویند .
ساختمان پلیمر معمولاً به صورت یک واحد مونومر نشان داده می شود .
مثلاً پلی اتیلن    پلی پروپیلن   و پلی کربنات
یک ماکرو مولکول ممکن است از مونومرهای جور یا مونومرهایی با ساختمان شیمیایی متفاوت تشکیل شده باشد .
پلیمر هایی را که از مونومرهای جور تشکیل شده باشند «هوموپلیمر » و آنهایی را که از مونومرهای ناجور تشکیل شده اند کوپلیمر می گویند .
از ترکیب واحد های مونومر باهمدیگر پلیمرهای خطی ، پلیمر های شاخه ای یا ساختمان سه بعدی تشکیل می شود .پلیمر های خطی آنهایی هستند که ماکرومولکولهای آنها زنجیر هایی بلند با درجه بی تفاوتی زیاد می باشند و اگر واحد مونومر را با A نشان دهیم ساختمان یک پلیمر خطی را می توان بصورت زیر نشان داد .
A A A A
پلیمر شاخه ای دارای زنجیری بلند به نام زنجیر اصلی و شاخه های جانبی است . تعداد و طول شاخه ها جانبی متغییر است .
از این رو در شبکه های فضایی کلمه «مولکول » معنی فیزیکی خود را از دست می دهد و عبارت است از ترکیب نامنظم تعداد زیادی از اتمها در فضا .
واحد های تکراری در زنجیر کوپلیمر ممکن است نامنظم (تصادفی) یا به طور متناوب و منظم قرار گیرند .کوپلیمرهایی را که مونومرها طول زنجیر به طور تصادفی تکرار می شوند کوپلیمر نامنظم می گویند .
کوپلیمرهای خطی را که در آنها هر یک از واحد های مونومری تشکیل زنجیر طویلی می دهد  کوپلیمر های دسته ای می گویند .
…-B- B- B- B….-A –A – A- A….
کوپلیمر های شاخه ای را که در آنها زنجیر اصلی از مونومر جور و شاخه های جانبی از مونومرهای ناجور باشند کوپلیمر پیوندی .
A- A-A-A-A-A



پلیمر ها را می توان بر اساس ساختمان زنجیر اصلی به دو دسته تقسیم کرد :
    پلیمر های جور زنجیر
    پلیمر های ناجور زنجیر


پلیمر های سه بعدی پلیمر های هستند با زنجیر هایی بلند که بوسیله پیوند های شیمیایی به یکدیگر متصل می شدند و یک شبکه سه بعدی را بوجود می آورند .





کوپلیمرها می توانند خطی ، شاخه ای یا سه بعدی باشند .گاه پلیمر های سه بعدی را اشتباهاً          «مولکول سه بعدی » می خوانند .
مولکول ، معمولاً کوچکترین ذرة جسم است که دارای خواص شیمیایی آن جسم بوده و به طور مستقل وجود دارد یک مولکول مرکب است از اتمهای جور یا ناجور که بوسیله پیوندهای شیمیایی ، جزئی از کل را تشکیل داده و همیشه دارای اندازه مشخصی است .
در پلیمر های خطی وشاخه ای تعریف مولکول حفظ می شود ولی در مورد ذرة خیلی بزرگی به کار می رود که می توان آن را اندازه گیری کرد .
در پلیمرسه بعدی تمام مولکولها با پیوند شیمیائی به یکدیگر اتصال دارند و اگر عبارت «مولکول سه بعدی » را بکار ببریم در این صورت کلمه مولکول بایستی به هر نقطه از پلیمر سه بعدی صرفنظر از اندازه آن گفته شود که درست نخواهد بود.
مشخصه اصلی ساختمان پلیمر :
مشخصه اصلی ساختمان یک ترکیب پلیمر عبارتند از وجود زنجیری ازمولکولها که در آن تعداد زیادی از اتمها متوالیاً ترکیب شده اند در پلیمر ها دو نوع پیوند وجود دارد ، پیوند شیمیایی و پیوند بین مولکولی که اختلاف آنها در مقدار انرژی و طول پیوند است .
اتمها در زنجیر به وسیله پیوند شیمیایی قوی به یکدیگر اتصال دارند و طول پیوند در حدود                    1 تا A0 1/5 است .
نیروهای بین مولکولی بسیار ضعیفتر در بنی زنجیر ها در فواصلی حدود 3 تا 4A0 بوجود می آید در میان زنجیر های پلیمر های سه بعدی ، پیوند شیمیایی عرضه وجود دارد اگر تعداد پیوندهای شیمیایی عرضی بین زنجیر ها کمتر از تعداد پیوندهای شیمیایی بین اتمها در طول زنجیر باشد یا اگر فاصله بین این ، پیوند های عرضی به قدر کافی زیاد باشد ، ترکیب مورد نظر خواص پلیمری را حفظ خواهد کرد اگر اتمها (کربن ) بوسیله پیوند شیمیایی به چهار اتم دیگر کربن با فواصل 1/5A0 اتصال داشته باشند
(مانند الماس) در این صورت ماده مورد نظر خصوصیات پلیمری نخواهد داشت .


دانلود با لینک مستقیم


گزارش کارآموزی پتروشیمی خوزستان فرآیند تولید پلی کربنات

مقاله پلی کربنات ها

اختصاصی از نیک فایل مقاله پلی کربنات ها دانلود با لینک مستقیم و پر سرعت .

مقاله پلی کربنات ها


مقاله  پلی کربنات ها

فایل بصورت ورد (قابل ویرایش) و در 46 صفحه می باشد.

 

شرح فرآیند ۴
برآورد هزینه ها ۱۰
هزینه های اصلی ۱۰
۶- تولید پلی کربنات با واکنشهای تراکمی‌بین سطحی: ۱۲
مروی بر فرآیند ۱۲
شرح فرآیند ۱۵
برآورد هزینه ها ۱۸
۷- تولید پلی کربنات در فرآیند راکتور پیوسته: ۱۹
شرح فرآیند ۱۹
بر آورد هزینه ها ۲۴
هزینه های اولیه و اصلی ۲۴
هزینه های تولید ۲۴
۸- تولید پلی کربنات با فسژنه کردن محلول ناپیوسته ۲۵
شرح فرآیند ۲۷
برآورد هزینه ها ۲۸
هزینه های اولیه ۲۸
هزینه تولید ۲۹
۹- تولید پلی کربنات با ترنس استریفیکایسون و سایر فرایندای مذاب. ۲۹
شیمی‌فرآیند ۲۹
مروری بر فرآیند ۳۰

 

 

شرح فرآیند

اطلاعات جدید و شرایط متفاوت بطور عملی شرایط زیست محیطی و ایمنی نیاز به روز رسانی فرآیند را بیشتر می‌کند. بیشتر مبانی طراحی و فرضیات مانند قبل است و در جدول ۵۰۳ آورده شده است. عامل انتقال زنجیر عامل کنترل کننده جرم مولکولی نیز به جای قتل از ( پارا ترشیاری بیوتیل فنل) با نسبت مولی یکسان استفاده می‌شود.

جدولی از تجهیزات مورد نیاز در جدول ۵۰۴ آورده شده است. این جدول سه عضو جدید را نسبت به طراحی های گذشته نشان می‌دهد. ۱- تبخیر کنندة خوراک فسژن

۲- واحد تصفیه و خالص سازی مجدد برای پلیمری که از محلول جدا شده است ۳- یک تبخیر کنندة ضد حلال برای جدا سازی پلیمرهای با جرم مولکولی پایین.

فرآیند با اختلاط بیس فنل A و پرا ترشیاری فنل بطور نا پیوسته برای کنترل دقیق بر میزان پریدین و متیلن کلراید، شروع می‌شود. سپس مخلوط حاصل بعد از عبور از یک خنک کننده به داخل راکتورها پمپ می‌شود. (هفت راکتور همزن دار خنک شونده که بطور سری کار می‌کنند) فسژن تبخیر می‌شود سپس متراکم شده و پس از خنک شدن به داخل راکتورهای مختلف خوراک دهی می‌شود تا بهترین نتیجه حاصل شود.

مقادیر بیشتری از میتلن کلراید در مرحله مشخصی از واکنش برای کنترل ویسکوزیته به راکتور  اضافه می‌شود. به محلول پلیمری حاصل هیدرکلریک اسید اعمال شده سپس در یک جریان متداخل با آب بون زدایی شده در دستگاه سانتریفوژ مایع شسته می‌شود و سپس محلول صاف می‌شود. برای اطمینان از درصد پایین مونومزوپلیمرهای با جرم مولکولی پایین، پلیمر بصورت پودر در یک جریان متداخل رسوب گذاری بازیافت می‌شود. پلیمر با صاف کردن از مرحله دوم رسوب می‌کند و رسوب فیلتر می‌شود. لایه تشکیل شده روی فیلتر دوباره با ضد حلال شسته شده و دوباره صاف می‌شود. لایه جدا سازی شده در مرحله دوم صاف کردن، خشک شده و آلیاژ شده و پس از عبور از الکترو در خرد شده و بسته بندی می‌شود انتقال دهنده های با هوای خشک، و نگهدارنده های تراشه ها و ایستگاههای کیسه گیری و بسته بندی نیز آماده شده اند.

پریدین با شستشوی محلول با خنثی سازی بوسیلة قلیا که در صد بسیار (کم حلال را خارج می‌کند) و باز یافت می‌شود و سپس با رسیدن به نقطه آزئوتروپ محلول آب – پریدن متوقف می‌شود. محلول آزئوترو با اضافه کردن محلول غلیظ قلیاء تازه شکسته می‌شود و پریدین جدا می‌شود. از محلول رقیق قلیا برای خنثی سازی محلول شستشو همانگونه که توضیح داده شد، استفاده می‌شود. در صد بسیار کم آب باقی مانده و در پریدن به شکل آزئوتروپ ۹ از طریق برج خشک کن، جدا می‌شود و پریدین مجدداً در فرآیند استفاده می‌شود.

بخشی از متیلن کلراید در مرحله اول جدا شده و پس از خشک کردن در جدا سازی دوباره مورد استفاده قرار می‌گیرد.

در طراحی های قبلی باقیمانده حلال و ضد حلال بطور مستقیم برای رسوب دادن بیشتر پلیمر، به فرایند بازگردانده می‌شود. این مایع شامل مقادیری از پلیمرهای با جرم مولکولی پایین و احتمالاً مونومر است و می‌تواند محصول را آلوده کند. در طراحی های جدید بخش جدا سازی مواد زائد اضافه شده است. اجزاء فرار پلیمرهای  با جرم مولکولی پایین با تبخیر توسط بخار آزاد در C -502 جدا می‌شود. محلول ضد حلال متراکم شده و به داخل جرج خشک کن C  -۵۰۳ سرازیر شده تا در آنجا خشک شود. سپس برای شستشوی مرحله اول لایه جدا شده در فیلتر همانگونه که در بالا توضیح داده شد استفاده شود. مواد آلی از جریان آب بالایی بوسیله دستگاه تصفیه آب C   -۵۰۴ جدا شده و این مواد آبی مجدداً به C  -۵۰۳ برگردانده می‌شوند.

یک کوره به عنوان مجزاء با نام pac sol می‌تواند پلیمرهای با جرم کم، ‌ضایعات پلاستیکی و مایعات آبی را مانند سایر ضایعات جامد بسوزاند و به خاکستر تبدیل کند. این دستگاه از یک مشعل استوانه ای دوار است که بعد از آن محفظه ای برای تکمیل فرآیند سوختن وجود دارد. گاز های حاصل از احتراق سرد شده و در یک جذب کننده Ventargi برای جدا کردن ذرات معلق تنظیف شده و سپس با محلول بازی برای جدا کردن گازهای اسیدی مانند هیدروژن کلراید،‌ تماس می‌یابد.

آبی که قبلاً پس از جدا سازی از پریدین مستقیماً به داخل فاضلاب هدایت می‌شود اکنون قبل از ورود به فاضلاب با کربن فعال در جذب کننده c   -۵۰۱ تماس پیدا می‌کند. عمر این جاذب بسیار بالا بوده و نیاز به تعویض آن وجود ندارد

هوایی که از خشک کن M-402 و فیلترهای S-403-4 می‌آیند، حاوی حلال ضد حلال می‌باشند و این مواد د جاذب کربن فعال C -506,505 جدا می‌شوند که این جانب بطور جایگزین کاری می‌کنند که در زمان غیر فعال بودن توسط بخار آب مجدداً تمیز میشوند.

مواد آلی جدا شده به بخش بازیافت حلال برگردانده می‌شوند.

خلاصه محصولات زاید در جدول ۵۰۵ آورده شده است.

جریانهای مواد زاید نشان داده شده آنهایی هستند که در حال کارکرد عادی فرایند اهمیت دارند. علاوه بر مقادیر نشان داده شده نشست مایعات از طریق پمپها و سایر تجهیزات وجود دارد. همچنین نشست بخارات از طریق پر و خالی شدن مخازن و سایر شرایط نیز وجود دارد. مقادیر بیشتری از آب با شستشوی محل فرآیند به فاضلاب اضافه می‌شود. همچنین مقادیر زیادی تخلیه در اثر اشتباهات کاربری عملکرد شیرهای اطمینان تخلیه و شستشوی تجهیزات در حین توقف های فرآیند، و شرایط مشابه می‌تواند رخ دهند.

بحث در مورد فرآیند:

دلیل اینکه C _E فسژن را بصورت بخار به داخل فرایند وارد می‌کند می‌تواند به خاطر تاثیرات جدی مقادیر بسیار کم فلزات بر کیفیت محصول می‌باشد.

فسژن خشک خورنده نمی‌باشد اما آب آنرا به شدت خورنده می‌کند پس ایجاد شرایط برای جدا سازی مقادیر بسیار کم فلزات، غیر منطقی به نظر می‌رسد. همچنین انتخاب مواد برای سازه ها با در نظر گرفتن این عامل تصحیح شده است. جلوگیری از این آلودگی می‌تواند با  استفاده از راکتورها و مخازنی که با شیشه پوشش داده شده اند انجام بگیرد. شیشه برای قلیا مناسب نیست و نیکل ( ماده ای که برای مواردی که تماس با قلیا وجود دارد ترجیح داده می‌شود) هم یکی از نامطلوبترین آلوده کننده ها می‌باشد. نیکل می‌تواند برای ساخت برخی از برجهای بازیافت پیریدین استفاده شود. با این وجود بدلیل خوردگی محصولات همراه با فاضلاب خواهند بود.

نیتانیم از دیدگاه تکنیکی می‌تواند به عنوان یکی از بهترین مواد جایگزین مطرح باشد.  اما این ماده گرانقیمت است قیمت صفحات نیتانیم ده دلار برای هر پوند و برای صفحاتی که نیتانیم بر روی فولاد چسبانده شده است شش دلار بر پوند است که کمترین ضخامت فولاد ۱۶/۱۱ اینچ می‌باشد. اگر فشار طراحی ضخامت را کنترل کند، وزن مخزن نیتانیم تقریباً با وزن مخزن فولادی یکسان می‌شود. در مدلهای حرارتی لوله های نیتانیم هزینه ای برابر با لوله های نیکلی دارند.

تجهیزاتی که با شیشه روکش شده اند در بیشتر قسمتی این طراحی انتخاب بهتری هستند. با این وجود بوجود آمدن سوراخهای کوچک در این پوشش شیشه می‌تواند باعث مسأله خوردگی در زمان سرویس دهی بشود، آلودگی ایجاد شده در محصول نهایی در اثر این عامل نباید خیلی جدی باشد. دستگاههای سانتریفوژ مایع معمولاً از فولاد ضد زنگ فسیل داده شده یافته می‌شوند. تماس کوتاه در این تجهیزات مانعی ندارد. برای نگهداری یونهای فلزی در فاز مایع باید از یک عامل (Chelatia) استفاده کرد در برخی سرویس دهی ها، استفاده از فولاد ضد زنگ علی رقم وجود نیکل در آن به فولاد کربنی ترجیح داده می‌شود زیرا مقاومت کلی آن در برابر خوردگی بیشتر است. همچنین استفاده از فولاد ضد زنگ می‌تواند از خوردگی در هنگامی‌که تجهیزات خاموش شده و تمیز می‌شوند، جلوگیری کنند. سازمان FDA در ایالات متحدة آمریکا اخیراً نگرانی بیشتری نسبت به مهاجرت پلیمرهای با وزن مولکولی کم ومونومر به داخل مواد خوراکی در حین تماس با آنها ابرازی می‌کند. علاوه بر این اجزاء چسبنده در مایعات در گردش می‌تواند فرآیند را مشکل کند به همین دلیل در این طراحی مایعات تبخیر شده تا پلیمرهای با جرم مولکولی کم جدا شدند و مایعات تقسیم شده و برای جدا سازی موثر مواد رسوب نکرده ای که می‌تواند پلیمر نهایی را آلوده کند مورد استفاده قرار گیرد. این عمل با شستشوی لایه تشکیل شده روی صافی مرحله اول بوسیله مایعات تمیز تصفیه شده صورت می‌گیرد.

علاوه بر جدا سازی مونور و مواد با جرم مولکولی پایین، پریدین و هیدرو کلراید آن باید بطور کامل از پلیمر جدا سازی شود، این اجزاء با شستشو با آب جدا می‌شنود. جداسازی مونومرو پلیمرهای با جرم کم، باعث ایجاد محلول صاف شده ای می‌شود که باید فرآیند شود. همچنین تبخیر اجزاء فرار باعث می‌شود که پلیمر به حالت بسیار ویسکوز و شاید چسبنده برسد. در این طراحی بخار برای جلوگیری از بسته شدن سطوح انتقال حرارت استفاده می‌شود. به هم زدن شدید با استفاده از بخار باعث می‌شود که الیگومر ها بصورت دوغابی در آب میعان یافته جدا شوند. اگر نیاز باشد می‌توان از حلالهای پلیمر با دمای جوش بالا استفاده کرد. اگر گرفتگی در سیستم رخ دهد می‌توان با عبور دادن حلال از سیستم این ذرات را تمیز کرد.

طراحی شامل تجهیزاتی برای خشک کردن مواد فرآیند نیز می‌باشد. امکان دارد بیس فنل A نیاز به خشک کردن داشته باشد.

این ماده برای جلوگیری از خطر انفجار این ماده همراه با گاز خنثی حمل می‌شود. رطوبت موجود در بین فنل A هر چند موجب جلوگیری از واکنش مطلوب می‌شود اما می‌تواند باعث رفتن مقادیری از فسژن شود.

نقش پریدین علاوه بر آنکه یک ماده جذب کنندة ایسه است، حلال بیس فنل A نیز می‌باشد. متیلن کلراید پلیمر را در خود حل می‌کند اما موتومردر آن حل نمی‌شود. این توانایی انحلال پذیری متضاد بیس فنل A و پلیمر از آنجا ناشی می‌شود که بیس فنل A  یک دهنده، پروتن است درحالی که پلیمر حاصل الکترون دهنده می‌باشد. GE به جای نوکیس پیریدین، از آهک به عنوان جاذب اسید استفاده می‌کند. به همین دلیل جدا کردن پلیمر از بیس فنل A ساده است. مشخص شده است که حلال کمتر از ۲ درصد وزنی ار بیس فنل A را در خود حل می‌کند. با وجود آنکه جذب اسید توسط آهک واضح نیست اما این روش در صنعت مورد استفاده قرار می‌گیرد.

برآورد هزینه ها

هزینه های اصلی:

هزینه های بنیادی واحدی که قابلیت تولید ۲۰ میلیون پوند بر سال از پلی کربنات مورد استفاده در فرآیند قالبگیری ترزیق در جدول ۵٫۶ نشان داده شده است. بدلیل تصحیحات زیادی که در اثر اطلاعات جدید و ملاحظات زیست محیطی و ایمنی بوجود می‌آید، این بر آورد هزینه با برآوردهای قبلی متفاوت است. هزینه اولیه تثبیت شده ۱۰ .۸ میلیون دلار است. هزینه کل با در نظر گرفتن هزینه زمین مورد استفاده   ۱۶ .۷ میلیون دلار می‌باشد. ( ۸۳ سنت برای هر پوند) ریز هزینه های اصلی بخش فرایند در جدول  ۵ .۴ نشان داده شده است. برآوردهای قابل مقایسه ای منتشر نشده است. GE گزارش کرده است که زمانی که تولید واحد صنعتی  Mt.vernon به ۱۵۰ میلیون پوند بر سال رسید، هزینه کلا پروژه ۷۵ میلیون دلار بود( ۵۰ سنت برای هر پوند) با در نظر گرفتن میانگین هزینه هایی که در مورد پروژه های مختلف به ثبت رسیده و ضریب عملکرد    ۹٫۹


دانلود با لینک مستقیم