![تحقیق آنالیز عدم قطعیت و حساسیت همراه با کالیبراسیون اتوماتیک برای مدل توزیعی حوضه](../prod-images/414323.jpg)
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:73
فهرست مطالب:
مقدمه ۱
مدل شبیهسازی حوضه آبریز : ۴
۳- نمایش حوضه و دادهها ۶
۴- شناسایی پارامتر ۷
۱-۴- نمایش دادن ۸
۲-۴- پارامترسازی ۹
۳-۴- آنالیز پارامتر (SA ) ۱۱
۱-۳-۴- دامنه و تقسیمات ورودی، دادهها و نمونهگیری ۱۳
۲-۳-۴- تعیین بخش حساسیت ۱۵
۳-۳-۴- نتایج کاربردی و بحث ۲۱
۵- برآورد پارامتر ۲۴
۶-اثبات و صحت مدل ۳۰
شیوه GLUE ۴۳
فرمولبندی پایه ۴۷
فرضیههایی بر پارامترها قبل از توزیع احتمال ۴۸
توابع درستنمایی less formal ۴۹
واریانس نمونه: ۵۰
واریانس نمونه باقیمانده: ۵۰
پارامترهای رفتاری ۵۲
مشتق توزیع احتمالی پشتی پارامتر از طریق مدل مونت کارلو ۵۳
مشتقگیری توزیع احتمال پیشبینانه ۵۴
آموزش گسسته و ناهماهنگ GLUE ۵۵
ویژگیهای مورد نیاز روش استنباطی Bayesian ۵۵
انجام و هماهنگی در آموزش ۵۶
تعادل و برابری بین پردازش دسته و آموزش متوالی ۵۷
آزمایش شبیه سازی شده ۵۹
مدل هیدرولیکی a.bc ۵۹
آزمایش نمونه ۶۰
نتایج آزمایش ۶۳
مقایسه ساده ۶۳
شبیه سازیها و مقدار و ارزش آزمایشات ۶۵
کاهش یا اتلاف کل اشتباه میانگین مربع ۶۷
نتیجه گیری و توصیه ها ۶۸
۱-۷- نتایج و بحث کاربرد ۷۰
۸- خلاصه و نتایج ۷۱
مقدمه
مدلهای هیدرولوژیک ابزارهای معینی هستند ما را قادر میسازند تا خیلی از موضوعات عملی و مهم را در طی برنامهریزی، طراحی عملیات و مدیریت سیستمهای ذخایر آب بررسی نماییم. با این وجود ، مدلها، ساده شدن واقعیت هستند و اینکه چقدر پیچیده هستند مهم نیست، مدلها تحت تاثیر بعضی از حالات مفهوم سازی یا تجربهگرایی هستند و نتایج آنها صرفاً همانند فرضیات و الگوریتمهای مدل، جزییات و کمیت ورودیها و براوردهای پارامتر، واقعگرایانه میباشند. در اکثر مدلها، این مسلئه ضرروی است را مکانیزم را صحت برآوردهای مدل را براساس اطلاعات مشاهده شده موجود تایید میکند. قبل از استفاده از مدلها برای اهداف مورد نظر خود، اجرا شوند. شیوه معمول برای انجام این وظیفه مفید، تشخیص مقادیر پارامترهای مدل است بطوریکه شبیهسازیهای مدل بطور فشرده رفتار مشاهده شده منطقه مورد نظر را هماهنگ میکند، شیوه عموماً بعنوان کالیبراسین نشان داده میشود. مشخصه و برآورد پارامتر دو مرحله خیلی مهم کالیبراسیون هستند. انتخاب پارامتر به مرحلهای اشاره دارد که در آن پارامترها نیاز دارند تا تنظیم گردید و انتخاب شوند در صورتیکه برآورد پارامتر شیوه بعدی تعیین مقادیر مناسب یا نزدیک بهینه پارامترهای ویژهای باشد. روشها و مشکلات انجام این دو مرحله درجهبندی میان دیگر عوامل به نمونه و پیچیدگی مدل شبیهسازی آبخیز درجهبندی شده بستگی دارد. اکثر مطالعات قبلی کالیبرگیری با مدلهای تجربی Lumped و مدلهای مفهومی Lumped سروکار دارد. اما متغیرهای آبخیز ورودیهارا برواکنشهای هیدرولوژیک تاثیر میگذارند. ممکن است از نظر فضایی و زمانی اختلاف داشته باشد. بنابراین محاسبه ناهمگونی متغیرهای محیطی نظیر نوع خاک، مصارف زمین، خصوصیات نقشهبرداری زمینی و پارامترهای آب و هوا برای شبیهسازی درست تاثیر خصوصیات مخنلف از نظر فضایی ضروری میباشد. مدلهای شبیهسازی طولانی مدت مداوم مانند ساختمان US کشاورزی (USDA ابزار ارزیابی آب و خاک را قادر به توضیح این متغیر جامانده تعداد پارامترها و متغیرها در مدل توزیع شده بیشتر از مدل Lumped برای آبخیز مشابه است که درجهبندی چنین مدلهایی بویژه مرحله تشخیص پارامتر خیلی پیچیده را ایجاد مینماید . هنوز با کارهای محدودی با توجه به کالیبرگیری مدلهای توزیعی انجام شده است. آرنولد، رفزگارد و نادلن و … افرادی هستند که تمرکز و توجه آنها به این منطقه از بررسی مبذول شده بود.
شاید مهمترین کار ضروری برای انجام مشخصات پارامتر کاهش تعداد پارامترهایی باشد که باید در مرحله برآورد پارامتر تحقق یابند. این مقاله ، استفاده از سه شیوه سلسه مراتبی را توضیح داد یعنی، نمایش پارامتر، معیاربندی فضایی و بررسی حساسیت کلی پارامتر تا پارامترهای قابل از اندازهگیری SWAT را بررسی نماید.
بررسی حساسیت پارامتر با استفاده از بررسی برگشت انجام شد که در محدودههای اطلاعات جفت ورودی و خروجی جمعشده براساس تکنیک مونت کارلو با نمونه لاتین هایپرکوب صورت گرفت.
برآورد پارامتر از این تعمیم پیروی میکند را کدام پارامترهای مدل شبیهسازی باید درجهبندی میشوند. دو نمونه شیوه کالیبرگیری اتوماتیک، کالیبرگیری دستی و اتوماتیک است. درجهبندی دستی برای مدلهای پیچیده بطور گستردهای استفاده میشود که شامل نمونه مدلهای توزیعی میباشد. اما این کالیبرگیری دستی وقتگیر و خیلی ذهنی است و موفقیت آن به تجربه فرد ارائه دهنده مدل و اطلاعات وی درباره آبخیز در طی فرضیات مدل و الگورنیم آن بستگی دارد. کالیبرگیری اتوماتیک سریع است، کمتر ذهنی میباشد و هنگامیکه جستجوی وسیع احتمالات موجود پارامتر راآغاز میکند نتایج بدست آمده از آن بهتر نتایج بدستآمده از کالیبرگیری دستی است. آرنولد و اکهاردوسزاث کالیبرگیری اتوماتیک را برای مدلهای توزیعی بکار بردند هر دو شیوه آمداز آلگوریتم جستجوی ارزیابی پیچیده متغیر استفاده نمودند. در این بررسی، مدول کالیبرگیری اتوماتیک با استفاده از آلگوریتمهای ژنتیک توسعه یافت. مدول حاصل برای درجهبندی جریان رود و برآوردهای تجمع رسوب SWAT بکار گرفته شد که از دادههای مربی آمده از آبخیز illinoisجنوبی استفاده نمود. متاسفانه، درجه بندی مدل، اعتبار پیشبینیهای مدل را ضمانت نمیکند. مقادیر پارامتر بدست آمده طی کالیبرگیری و پیشبینیهای بعدی ایجاد شده از مدل درجهبندی شده تنها همانند اعتبار فرضیات مدل برای آبخیر مورد بررسی و کمیت و کیفیت داده های واقعی آبخیز مورد استفاده برای شبیهسازی و درجهبندی،واقعی میباشند. بنابراین حتی بعد از کالیبرگیری، بطور بالقوه تعداد زیادی احتمال در نتایج وجود دارد زیرا این خیلی بعید است که دادههای فرعی فاقد اشتباه یافت شود و بخاطر اینکه هیچ مدل شبیهسازی کاملاً انعکاس واقعی و درست از روش فیزیکی نمونه نمیباشد. این بررسی از ارزیابی عدم قطعیت درست نمایی کلی استفاده نمود تا احتمالات درگیر با جریان رود فرض شده و تجمع رسوب برای آبخیز را بررسی نماید.
مدل شبیهسازی حوضه آبریز :
SWAT یک شبیهساز زمانی مداوم و توزیع شده از نظر فضایی میباشد که برای کمک به مدیران ذخیره آب در تاثیرات فرض شده روشهای مدیریتی زمینی روی آب، رسوب و بار شیمیایی کشاورزی توسعه یافته است.
SWAT استفاده از اطلاعات آبخیز نظیر آب و هوا، خاک، وضعیت زمین، سبزیجات و روشهای مدیریت زمین را ایجاد میکند تا روشهای آبخیز نظیر جریان سطحی یا زیر سطحی، فرسایش و رسوب، روشهای رسوب کانال و زمینی رشد محصول برای روشهای مدیریتی مصرفی کشاورزی و کیفیت آب بعلاوه انواع گوناگون نیتروژن و فسفر را شبیهسازی مینماید. مدل براساس مقیاس زمانی روزانه با Subderly کار میکنند. از نظر فضایی، مدل آبخیز را در آبگیرهای فرعی، تقسیم میکنند. و بالقوه آبگیریهای فرعی را در واحدهای واکنش هیدرولوژیک(HRUs) براساس مشخصههای فیزیکی آبخیز منعکس میکند.
SWAT اجزاء سازنده هیدرولوژیک و واکنشهای متقابل آنها را به آسانی و تا حد امکان واقعی شبیهسازی میکند. علاوه بر رشد گیاه و محصول آن و اجزاء سازنده کمی آب، جریان عادی هیدرولوژیک در سطح شبیهسازی SWAT و روشهای انتخاب نهایی زیر سطح، برای زمانهای بارش برف و باران، ذوب شدن برف، روشهای منطقه Vadose ، تراوش، تبخیر، جذب گیاه، گلهای جانبی و جریانات آبزمینی به حساب میآیند، مقدار و ارزش انتخاب نهایی با استفاده از تکنیک اعداد منحنی تخمین زده میشود و اوج انتخاب نهایی با استفاده از فرمول اصلاحی گویا محاسبه میشود. بار و مقدار رسوب از آبگیر فرعی با استفاده از معادله اتلاف خاک اصلاح شه جهانی تولید میگردد. (Musle) مدل فاکتور Cمعادله Musle را براساس مقیاس روزانه با استفاده از اطلاعات حاصله از مدول رشد گیاه به روز میکند بنابراین برای تغییر پوشش گیاه در طی چرخه رشد آن و تاثیر آن بر فرسایش حسبا میآید.
تحقیق آنالیز عدم قطعیت و حساسیت همراه با کالیبراسیون اتوماتیک برای مدل توزیعی حوضه