نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

بررسی پدیده جزیره ای شدن در شبکه های قدرت امروزی و روش های مقابله با آن

اختصاصی از نیک فایل بررسی پدیده جزیره ای شدن در شبکه های قدرت امروزی و روش های مقابله با آن دانلود با لینک مستقیم و پر سرعت .

بررسی پدیده جزیره ای شدن در شبکه های قدرت امروزی و روش های مقابله با آن


بررسی پدیده جزیره ای شدن در شبکه های قدرت امروزی و روش های مقابله با آن

 

 

 

 

 

چکیده:

پدیده جزیره ای شدن غیر عمدی زمانی که شبکه سراسری قطع شده و منابع تولید پراکنده شبکه را تغذیه می کنند اتفاق می افتد. که این امر می تواند منجر به خطرات جدی برای کسانی که در حال انجام تعمیرات روی خط انتقال می باشند شود. روش های متفاوتی برای جلوگیری از وقوع این پدیده مطرح شده است. روشی که در این پایان نامه برای شناسایی ناحیه جزیره ای شده استفاده شده است شامل روش فعال (تکنیک فیدبک مثبت) و دیگری روش غیرفعال (تکنیک VU و THD) می باشد. با ترکیب این دو تکنیک روش هیبرید شناسایی جزیره برای DGهای سنکروه به دست آمده است. نتایج شبیه سازی نشان می دهد که روش هیبرید شناسایی بسیار موثرتر از هرکدام از روش های فوق می باشد. شبیه سازی ها به منظور معلوم کردن مزایای روش هیبرید شناسایی بر روی شبکه 13 با سه IEEE ارائه شده است.

مقدمه

امروزه با تغییر و پیشرفت روزافزون در صنعت برق شاهد بروز تحولات عمده ای هستیم که تحت عنوان کلی تجدید ساختار صنعت برق مطرح می گردند، انقلابی که آهسته آهسته روش ارتباط ما را با بازار انرژی تغییر می دهد. بخشی از این تحول اجتناب ناپذیر که در بخش تولید توان انجام می شود تکنولوژی تولید پراکنده است.

تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاه ها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. همچنین اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد. از جمله مواردی که استفاده از واحدهای تولید پراکنده را مورد توجه قرار می دهد می توان به مسائلی نظیر مسائل اقتصادی در توسعه نیروگاه ها، کاهش آلودگی محیط زیست، بالا بردن بازدهی این منابع در تولید برق، بالا بردن کیفیت برق رسانی به مشتریان، کاهش تلفات در شبکه های توزیع، بهبود پروفیل ولتاژ، آزادسازی ظرفیت شبکه و بسیاری از مواد دیگر اشاره نمود.

فصل اول

مقدمه ای بر تولیدات پراکنده

1-1- مقدمه

امروزه با تغییر و پیشرفت روزافزون در صنعت برق شاهد بروز تحولات عمده ای هستیم که تحت عنوان کلی تجدید ساختار صنعت برق مطرح می گردند، انقلابی که آهسته آهسته روش ارتباط ما را با بازار انرژی تغییر می دهد. بخشی از این تحول اجتناب ناپذیر که در بخش تولید توان انجام می شود، تکنولوژی تولید پراکنده است.

تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاه ها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین ترین راه اندازی می شوند. همچنین اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد. از جمله مواردی که استفاده از واحدهای تولید پراکنده را مورد توجه قرار می دهد می توان به مسائلی نظیر مسائل اقتصادی در توسعه نیروگاه ها، کاهش آلودگی محیط زیست، بالا بردن بازدهی این منبع در تولید برق، بالا بردن کیفیت برق رسانی به مشتریان، کاهش تلفات در شبکه های توزیع، بهبود پروفیل ولتاژ، آزادسازی ظرفیت شبکه و بسیاری از موارد دیگر اشاره نمود.

تعداد صفحه : 141

 


دانلود با لینک مستقیم


بررسی پدیده جزیره ای شدن در شبکه های قدرت امروزی و روش های مقابله با آن

سمینار ارشد برق بررسی روش های کنترل پدیده سرج در کمپرسورها

اختصاصی از نیک فایل سمینار ارشد برق بررسی روش های کنترل پدیده سرج در کمپرسورها دانلود با لینک مستقیم و پر سرعت .

سمینار ارشد برق بررسی روش های کنترل پدیده سرج در کمپرسورها


سمینار ارشد برق بررسی روش های کنترل پدیده سرج در کمپرسورها

چکیده:

ناپایداری های آئرودینامیکی فلو می توانند کمپرسور را بطور جدی آسیب رسانند و ناحیه عملکرد سیستم را محدود نمایند بنابراین بایستی برای اجتناب از آنها چاره ای اندیشید.

ناپایداری سرج عبارتست از نوسانات یکبعدی که منجر به افزایش فشار و فلوی جرمی کمپرسور می گردد. سرج ناحیه کاری سیستم را به شدت تحت تاثیر قرار داده و راندمان آن را کاهش می دهد و نهایتا منجر به آسیب جدی کل سیستم می گردد. این پدیده در نرخ های فلوی جرمی کم کمپرسور رخ می دهد و نتیجه آن ایجاد نوسانات با دامنه بزرگ در فشار و نرخ فلوی جرمی خروجی از کمپرسور است.

تاکنون کارهای زیادی برای حذف مشکل سرج انجام شده است و بیشتر این کارها بر اساس کار گرایتزر (1976) و موره ( 1986 ) می باشند  زیرا این افراد اولین کسانی بودند که مدلهای دینامیکی را برای آنالیز  و طراحی سیستمهای کنترل جهت سیستمهای فشرده سازی و پایدارسازی آنها، پیشنهاد نمودند و مدلهای ارائه شده توسط آنها بطور گسترده ای مورد استفاده و بهره برداری سایر محققین این زمینه کاری قرار گرفته است. در این مجموعه هدف ما بررسی مدلهای مختلف و همچنین کنترلرهای بکار رفته جهت کنترل پدیده های ناپایداری فلو در کمپرسورها می باشد.

مقدمه:

کمپرسورها به دلیل کاربرد گسترده ای که در صنایع مختلف برای فشرده سازی و انتقال گازها دارند از اهمیت ویژه ای بر خوردارند. پدیده سرج که یک ناپایداری فلو در کمپرسورها به حساب می آید، ناحیه عملکرد سیستم فشرده سازی را محدود می نماید و مانع از دستیابی به حداکثر راندمان کمپرسور می شود. لذا کنترل این پدیده از مدتها قبل در کانون توجه محققان قرار گرفته است . تاکنون روشهای مختلفی جهت کنترل این ناپایداری در کمپرسورهای محوری و گریز از مرکز پیشنهاد گردی ده است . با توجه به کاربرد کمپرسورهای محوری در موتورهای جت و هواپیما، بیشتر کارها در زمینه کنترل سرج مربوط به کمپرسورهای محوری می باشد، در این مجموعه ما روشهای نوین کنترل سرج در کمپرسورهای محوری و سانتریفیوژ را که مبتنی بر کنترل فعال می باشند بررسی می نماییم.

فصل اول: کلیات

1-1) مقدمه

در این مجموعه هدف ما بررسی مدلهای مختلف و همچنین کنترلرهای بکار رفته جهت کنترل پدیده های ناپایداری فلو در کمپرسورها می باشد . ناپایداری های آئرودینامیکی فلو می توانند کمپرسور را بطور جدی آسیب رسانند و ناحی ه عملکرد سیستم را محدود نمایند بنابراین بایستی برای اجتناب از آنها چاره ای اندیشید.

ابتدا مدلهای استخراج شده برای سیستم های فشرده سازی محوری و گریز از مرکز را معرفی می نماییم، سپس به بررسی روشهای مختلف ارائه شده تا کنون برای کنترل ناپایداری سرج در کمپرسور های محوری و گریز از مرکز می پردازیم، نهایتا مقایسه روشهای مختلف با یکدیگر و نتیجه گیری پایانی را می آوریم و در انتها چند مدل تجاری کنترلرهای آنتی سرج را معرفی می نماییم.

2-1) پیشینه تحقیق

مدل دینامیکی به دست آمده برای کمپرسور های محوری و سانتریفیوژ بر اساس مدل دو حالته با پارامترهای lumped طبق مدل ارائه شده توسط گرایتزر می باشد که مبنای طراحی کنترلرهای آنتی سرج از گذشته تا کنون برای این کمپرسورها می باشد. در روشهای قدیمی کنترل سرج تکنیک مورد استفاده، اجتناب از سرج بود. در این روشها از ابزارهای مختلفی بر ای دور نگه داشتن نقطه کار کمپرسور از ناحیه ای که در آن سرج رخ می دهد، استفاده می گردید. از نظر عملی خطی به نام خط کنترل سرج در فاصله ای دورتر از خط سرج ترسیم می شود تا بدین وسیله یک حاشیه اجتناب از سرج در منحنی مشخصه کمپرسور به دست آید. این روش ما را مطمئن می سازد که نقطه کار سیستم خط سرج را قطع نمی کند و لذا پدیده سرج به وقوع نمی پیوندد. این روش ناحیه کاری کمپرسور را به ناحیه ای که سیستم در وضعیت حلقه باز در آن ناحیه پایدار است، محدود کرده و لذا راندمان کل سیستم را محدود می کند.

روشهای مبتنی بر کنترل فعال سرج، که ناپایداریهایی را که منجر به سرج می شوند حذف نمایند، می توانند ناحیه عملکرد پایدار سیستم را به آنسوی خط سرج سیستم گسترش دهند و ناحیه کاری پایدار سیستم را وسیعتر نمایند . براساس مدل خطی شده سیستم، اپشتاین، فوکس ویلیام و گرایتزر، روش کنتر ل فعال جهت حذف سرج ارائه داده اند. کنترلر فیدبک مثبت استاتیک خروجی توسط فرنک ویلمز جهت کنترل سرج با محرک ولو تخلیه فلوی جرمی، مورد استفاده گردید که توانست حدود 7 درصد در فلوی جرمی نقطه سرج بهبود ایجاد نماید . این روش بر اساس تکنیکهای جایابی قطب با استفاده از مدل خطی شده گرایتزر با دو متغیر حالت بود که در آن از تغییرات سرعت کمپرسور و اثرات دما، صرف نظر شده بود.

تعداد صفحه : 122


چکیده 1
مقدمه 2
فصل اول : کلیات 3
1) هدف 4 -1 °
2)پیشینه تحقیق 4 -1 °
3)روش کار و تحقیق 5 -1 °
فصل دوم : آشنایی با کمپرسورها و پدیدة سرج 6
1) مقدمه -2 °
2) اصول عملکرد کمپرسورها -2 °
3) توصیف عملکرد کمپرسورها -2 °
4) ناپایداری های فلو در کمپرسورها -2
5) رفتار دینامیکی کمپرسورها -2
RS 6)جلوگیری از سرج و -2 °
فصل سوم : بررسی مدل ریاضی سیستم فشرده سازی 15
1) مقدمه -3
2) مقدمات لازم -3
3) مدل کمپرسور در صورت قرار گرفتن ولو در خروجی آن - 3
4) وضعیت تعادل -3
برای کمپرسورهای با سرعت متغیر Moore-Greitzer 5) مدلی از نوع -3
فصل چهارم : بررسی روشهای کنترل سرج 35
1) مقدمه -4 °
back stepping 2) کنترل سرج با استفاده از -4 °
Passivity 3) کنترل سرج بر اساس -4 °
4) پایدار سازی سرج در کمپرسورهای سانتریفیوژ با استفاده از فیدبک مثبت -4 °
فهرست مطالب
عنوان مطالب شماره صفحه
5-4 ) پایدار سازی فعال سرج با تزریق هوا
6-4 ) استفاده از روشهای کنترل غیرخطی برای کنترل یک کمپرسور محوری
RS برای کنترل سرج و LPV 7-4 ) کنترل جدولبندی بهره با شناسایی
در موتورجت توسط فیدبک خروجی stall 8-4 ) کنترل سرج و
9-4 )کنترل تطبیقی ناپایداری سرج در کمپرسور
فصل پنجم : نتیجه گیری و پیشنهادات 97
 نتیجه گیری 99
 پیشنهادات 99
پیوست ها1000
منابع و ماخذ 108
فهرست منابع لاتین 108
سایت های اطلاع رسانی 109
چکیده انگلیسی 110


دانلود با لینک مستقیم


سمینار ارشد برق بررسی روش های کنترل پدیده سرج در کمپرسورها

پیاده سازی شاخص های تشخیص پدیده ناپایداری ولتاژ و بهبود شاخص انتخابی VSLBI

اختصاصی از نیک فایل پیاده سازی شاخص های تشخیص پدیده ناپایداری ولتاژ و بهبود شاخص انتخابی VSLBI دانلود با لینک مستقیم و پر سرعت .

پیاده سازی شاخص های تشخیص پدیده ناپایداری ولتاژ و بهبود شاخص انتخابی VSLBI


پایان نامه ارشد برق پیاده سازی شاخص های تشخیص پدیده ناپایداری ولتاژ و بهبود شاخص انتخابی VSLBI

 

 

 

 

 

 

چکیده:
پدیده ناپایداری ولتاژ از دهههای آغازین قرن بیستم و با رشد صنعت برق مورد توجه محققان، علاقهمند در این زمینه قرار گرفت و در طول دهههای گذشته روشهایی برای تشخیص این پدیده و جلوگیری از آن ارائه شده است. از طرف دیگر در شبکه های امروزی به دلیل رشد کم سیستمهای قدرت در برابر افزایش مصرف و از طرفی حرکت به سمت سیستمهای تجدید ساختار یافته، سبب افزایش فشار بر سیستمهای قدرت شده است بنابراین یکی از مهمترین دغدغه های صنعت برق بحث پایداری ولتاژ میباشد. این نکته باعث شده تا بار دیگر نظر محققان به این مسئله جلب شود. و باعث ارائه روشهای تازهای برای تشخیص پدیده ناپایداری ولتاژ گردیده است که پیچیدگی و محاسبات زیاد روشهای گذشته را نداشته و کارکرد قابل قبولی در نتیجههای بدست آمده ا ز آنها دیده میشود. بنابراین در این پایاننامه به کمک تعدادی از این روشها به بررسی تشخیص پدیده ناپایداری ولتاژ پرداخته خواهد شد.و در مواردی کارکرد آنها بهبود داده خواهد شد.

روشهای بررسی شده در این پایاننامه به دو دسته شاخصهای شین و شاخص های خط تقسیم شده و در یک شبکه استاندارد پیادهسازی خواهند شد. از آنجا که پدیده ناپایداری ولتاژ بطور عمده مربوط به ناحیههای بار بوده و به مشخصه بار بستگی دارد خواهیم دید که شاخصهای شین نسبت به شاخصهای خط دارای کارکرد بهتری هستند و پاسخ بدست آمده از آنها از دقت بیشتری برخوردار است. از بین شاخصهای شین شاخص VSLBI و ZL/Zs دارای کارکرد بهتری هستند و در هردو حالت اغتشاش کوچک و بزرگ به خوبی جواب خواهند داد. هرچند این شاخص ها در بارهای وابسته به ولتاژ به درستی کار نخواهند کرد اما پس از بهبود آنها توسط روشهای پیشنهادی به پاسخهای خوبی خواهند رسید. البته دیگر شاخصهای شین بررسی شده نیز تا حدودی درست جواب خواهند داد. اما در برخی حالتها ایرادهایی دیده میشود که باعث شده کارکرد کلی آنها همچون دو شاخص پیشین نباشد.

از بین شاخصهای خط، شاخص LQP در هر دو حالت اغتشاش کوچک و بزرگ جوابهای بهتری نسبت به دیگر شاخصها از خود نشان خواهند داد. البته شاخصهای FVSI و Lmn هم دقت خوبی دارند اما در مقایسه با LQP با مقداری خطا پاسخ خواهند داد.

مقدمه:

پایداری سیستم قدرت از دهه های آغازین قرن گذشته به عنوان یک مسئله مهم در امنیت بهره برداری از سیستمهای قدرت، شناخته شده و مورد توجه قرار گرفته است. بسیاری از خاموشی های سراسری که در شبکه های قدرت مختلف دنیا رخ داده است، به دلیل ناپایداری سیستم قدرت بوده و توجه بسیاری از صنایع و شرکت های برق را ب ه این مساله معطوف نم وده است . گسترش سیستم های قدرت به دنبال افزایش خطوط ارتباطی و ایجاد شبکه های به هم پیوسته، استفاده از تکنولوژی های جدید در کنترل و حفاظت شبکه و افزایش میزان تقاضا و به دنبال آن بهره برداری از سیستم با حاشیه پایداری کم، به خصوص در سیستم های تجدید ساختار یافته، انواع مختلف
ناپایداری ها در سیستم های قدرت به همراه داشته است. به عنوان م ث ال، پایداری ولتاژ، پایداری فرکانس و نوسانات بین ناحیه ای بیش از گذشته دغدغه مهندسین سیستم های قدرت را برانگیخته است. بنابراین فهم و درک صحیح از انواع ناپایداری ها و چگونگی به وقوع پیوستن آنها جهت طراحی  و بهره برداری سیستم های قدرت، بسیار ضروری است.

همان گونه که بیان گردید، یکی از انواع ناپایداری ها در شبکه های قدرت، ناپایداری ولتاژ است . در سال های اخیر با توجه به رشد میزان مصرف و هزینه بالای احداث نیروگاه ها و خطوط انتقال، به ویژه در سیستم های تجدید ساختار یافته، بعضاً بهر هبرداری شبکه های قدرت تا نزدیکی حداکثر ظرفیت نیروگاه ها و خطوط شبکه انجام می گیرد که در نتیجه شبکه تحت فشار زیادی قرار گرفته و از لحاظ ولتاژی دچار مشکل خواهد شد. وقوع خاموشی های سراسری اخیر در برخی شبکه های قدرت مهم دنیا مانند فروپاشی ولتاژ در کشور شیلی و فروپاشی شبکه شمال شرق آمریکا و کانادا در آگوست سال 2003 و فروپاشی شبکه قدرت جنوب ایتالیا در سپتامبر سال 2003 گویای این مطلب می باشند. به همین دلیل، بحث ناپایداری ولتاژ در سال های اخیر بسیار مورد توجه قرار گرفته است. از طرف دیگر همانطور که می دانید سیستم های قدرت قسمت زیادی از انرژی مورد نیاز ما را فراهم می کنند هنگامی که سیستم قدرت دچارناپایداری و فروپاشی شود دیگر سیستم های مهم همچون سیستم های حمل و نقل الکتریکی، چراغ راهنماها و سیستم های امنیتی و سیستم آب رسانی شهری و غیره هم دچار مشکل خواهند شد در نتیجه فروپاشی سیستم های قدرت باعث بروز مشکلات بزرگی می شود که اهمیت توجه به این موضوع را نشان می دهد.

در کشور ما نیز، با توجه به افزایش میزان مصرف و هزینه بالای احداث خطوط و نیروگاه های جدید، به ناچار بایستی در آینده ای نه چندان دور، بهره برداری از شبکه در ظرفیت بالاتر انجام گیرد. در نتیجه در این پایان نامه به بررسی روش های تشخیص پدیده ناپایداری ولتاژ پرداخته خواهد شد.

در فصل اول پس از بیان مفاهیم اساسی مربوط به پایداری ولتاژ، چگونگی استفاده از منحنی ها P-V و V-Q به عنوان روشی برای تحلیل استاتیکی شبکه از لحاظ پایداری ولتاژ مورد بررسی قرار می گیرد و تاثیر پارامترهای گوناگون شبکه بر روی پایداری گفته خواهند شد.

در فصل دوم روش های تشخیص پدیده ناپایداری ولتاژ که به دو دسته شاخص های مربوط به شینه بار و شاخص های مربوط به خط انتقالی تقسیم می شود و معرفی می گردند.

در فصل سوم، این روش ها در ابتدا بر روی شبکه دوشینه ساده و سپس بر روی شبکه 9 شینه IEEE در حالت ناپایداری اغتشاش کوچک پیاده سازی می شوند از آنجا که بیشتر شاخص های مربوط به شین بار نیاز به مدار معادل تونن دارند در این فصل روش های گوناگون تخمین پارامترهای مدار معادل بیان خواهد گردید و در مورد بهبود عملکرد برخی شاخص ها پیشنهادهایی ارائه خواهد شد.

در فصل چهارم نیز شاخص های تشخیص پدیده ناپایداری ولتاژ بر روی شبکه ی 9 شینه IEEE  در حالت اغتشاش بزرگ پیاده سازی خواهد شد و چگونگی به کار بردن و تعیین حد تنظیم پایداری برای یکی از شاخص ها ارائه خواهد شد.
در فصل پنجم نیز، نتیجهگیری کارهای انجام شده و پیشنهادهای در جهت ادامه کار ارائه خواهد شد.

تعداد صفحه : 116

 

 

چکیده 1
مقدمه 2
فصل اول : مفاهیم پایه در پایداری ولتاژ 5
1-1 مقدمه 6
2 مفاهیم پایه پایداری ولتاژ 6 -1
1-2 پایداری ولتاژ و فروپاشی ولتاژ 6 -1
7 P-V 2-2 منحنی های -1
9 V-Q 3-2 منحنی های -1
10 P-V 3 تاثیر پارامترهای مختلف بر روی منحنی -2
1-3 ضریب توان 10 -2
2-3 نوع بار 13 -2
3-3 تغییر دهنده تپ 17 -1
تنظیم کننده خودکار ولتاژ 17 ،AVR 4-3 -1
5-3 المانهای شبکه 17 -1
1-5-3 قطع خط 17 -1
2-5-3 از مدار خارج شدن ترانسفورماتور 17 -2
3-5-3 از مدار خارج شدن ژنراتور 17 -1
4-5-3 افزودن خازن شنت 18 -1
5-5-3 حذف بار 18 -1
فصل دوم : روش های تشخیص پدیده ناپایداری ولتاژ 19
1 مقدمه 20 -2
2 شاخصهای مربوط به شینه بار 20 -2
20 VSLBI 1-2 شاخص -2
24 ZL/ZS 2-2 شاخص -2
29 SDC 3-2 شاخص -2
31 Indicator 4-2 شاخص -2
3- شاخصهای مربوط به خط انتقال 36 2
36 VSMI 1-3 شاخص -2
1-1-3 مدل ریاضی پایه 36 -2
خ
2-1-3 معادلات کلی برای خط انتقال دارای تلفات 38 -2
3-1-3 بکار بردن شاخص در سیستم قدرت گسترده 41 -2
42 FVSI 2-3 شاخص -2
44 Lmn 3-3 شاخص -2
45 LQP 4-3 شاخص -2
فصل سوم : پیاده سازی روش های تشخیص ناپایداری ولتاژ در حالت اغتشاش کوچک و بهبود آنها
1 مقدمه 48 -3
2 پیاده سازی شاخص های مربوط به شینه بار 48 -3
50 VSLBI 1-2 شاخص -3
در شبکه دو شینه 50 VSLBI 1-1-2 پیادهسازی شاخص -3
54 IEEE در مدار 9 شینه VSLBI 2-1-2 بکار بردن شاخص -3
55 ZL/ZS 2-2 شاخص -3
در شبکه دو شینه 55 ZL/ZS 1-2-2 پیادهسازی شاخص -3
58 IEEE در مدار 9 شینه ZL/ZS 2-2-2 بکار بردن شاخص -3
63 SDC 3-2 شاخص -3
در شبکه دو شینه 63 SDC 1-3-2 پیادهسازی شاخص -3
64 IEEE در شبکه 9 شینه SDC 2-3-2 بکار بردن شاخص -3
66 Indicator 4-2 شاخص -3
در شبکه دو شینه 66 Indicator 1-4-2 پیادهسازی شاخص -3
67 IEEE در شبکه 9 شینه Indicator 2-4-2 بکاربردن شاخص -3
5-2 جمع بندی عملکرد شاخص های مربوط به شینه بار 68 -3
3 پیاده سازی شاخص های مربوط به خط انتقال 70 -3
70 VSMI 1-3- شاخص 3
در شبکه دو شینه 70 VSMI 1-1-3 پیادهسازی شاخص -3
71 IEEE در شبکه 9 شینه VSMI 2-1-3 بکاربردن شاخص -3
72 FVSI 2-3- شاخص 3
در شبکه دو شینه 72 FVSI 1-2-3 پیادهسازی شاخص -3
73 IEEE در شبکه 9 شینه FVSI 2-2-3 بکاربردن شاخص -3
73 Lmn 3-3- شاخص 3
در شبکه دو شینه 73 Lmn 1-3-3 پیادهسازی شاخص -3
74 IEEE در شبکه 9 شینه Lmn 2-3-3 بکاربردن شاخص -3
74 LQP 4-3- شاخص 3
در شبکه دو شینه 74 LQP 1-4-3 پیادهسازی شاخص -3
د
76 IEEE در شبکه 9 شینه LQP 2-4-3 بکاربردن شاخص -3
5-3- جمع بندی عملکرد شاخص های مربوط به خط انتقال 76 3
فصل چهارم : پیاده سازی روش های تشخیص ناپایداری ولتاژ در حالت اغتشاش بزرگ
و بهبود روش های موجود 78
1 مقدمه 79 -4
2 پیادهسازی شاخصهای مربوط به شینه بار 80 -4
80 VSLBI 1-2 شاخص -4
81 ZL/ZS 2-2 شاخص -4
83 SDC 3-2 شاخص -4
84 Indicator 4-2 شاخص -4
5-2 جمع بندی عملکرد شاخص های مربوط به شینه بار 85 -4
3- پیاده سازی شاخص های مربوط به خط انتقال 86 4
86 VSMI 1-3 شاخص -4
87 FVSI 2-3 شاخص -4
87 Lmn 3-3 شاخص -4
88 LQP 4-3 شاخص -4
5-3 جمع بندی عملکرد شاخص های مربوط به خط انتقال 89 -4
4 مقایسه شاخص مربوط به شینه بار و شاخص های مربوط به خط انتقال 90 -4
فصل پنجم : نتیجهگیری و پیشنهادها 91
1 نتیجهگیری 92 -5
2 پیشنهادهای ادامه کار 94 -5
پیوست ها 95
پیوست 1: روشهای تخمین مدار معادل تونن 96
منابع و ماخذ 99
فهرست منابع فارسی 99
فهرست منابع لاتین 100
چکیده انگلیسی 102

 

 

 

 


دانلود با لینک مستقیم


مقاله پدیده کاویتاسیون

اختصاصی از نیک فایل مقاله پدیده کاویتاسیون دانلود با لینک مستقیم و پر سرعت .

مقاله پدیده کاویتاسیون


مقاله  پدیده کاویتاسیون

تعداد صفحات : 24
فرمت فایل : word (قابل ویرایش)
فهرست مطالب :
کاویتاسیون (کلیات و تعاریف )
کاویتاسیون در لوله ها
کاویتاسیون در پمپ ها
ظریب کاویتاسیون
کاویتاسیون در توربین ها
روشهای جلوگیری از وقوع پدیده کاویتاسیون
سرریز سدها
سرریز لبه آب ریز
کنترل کاویتاسیون در سرریزهای بلند
سرریزهای آبرو
سرریزهای سیفونی
سرریز اُجی
سرریز نیلوفری
حوضچه آرامش
سرریزهای شیب شکن
فشار در آبروها
سرریزهای سیفونی
تونل
اشکال تبدیل های
تبدیل های ورودی
همگراها و واگراها
سرریز اُجی
کنترل کاویتاسیون
اختلاط هوا در آب
اثر هوا در کاویتاسیون
هوادهی طبیعی
روش bauer
روش wod
روش bor man
روش rico & ferrnndo
روش blaser & hager
مقایسه روشها
هوادهی مصنوعی
بخش های هوا ده
جریان هوا
بحث و نتیجه گیری
کاویتاسیون حاصل از ناهواری های سطح در سرعت بالا
مقدمه
برآمدگی های بستر جریان
شیارهای عرضی و سوراخ های بستر حریان
سیب های برامده و فرو رفته از بستر جریان
برامدگی بند ها در سطوح جریان
ناصافی های سطح بستر جریان
برآمدگی هادر گشودگی ناگهانی
راه چاره ناصافی های سطح بستر جریان
خلاصه ای از خرابی های سرریز سد شهید عباس پور ناشی از کاویتاسیون سرعت بالا
علل خرابی های سرریز سد
کاویتاسیون
1- کلیات وتعاریف
پدیده کاویتاسیون درجریان مایعات زمانی به وقعوع می پیوندد که فشار مطلق به طور موضعی در درجۀ حرارت موجود مایع،به مقدار فشار بخار مایعpvکاهش پیدا کند.
فشاربخارمایع تابع نوع مایع ودرجۀ حرارت آن است. در اثر کاهش فشار، مایع به طورموضعی تبخیرمی شود وگازهای محلول در آن نیز متصاعد گشته وحفره های مربوط به حباب های بخار گاز در بطن جریان مایع به وجود می آید ودر نتیجه باعث تغییر حالت در جریان مایع می شود(جریان مایع همگنی خود را از دست داده وازحالت یک فازه به دو فازه تبدیل می شود). حباب های ایجاد شده تا لحظه ای خیلی کوتاه خود رادرجریان مایع نگه داشته وحتی اگرتنزل فشارادامه یابد حباب های مذکوراتساع پیدا کرده وسپس درمنطقه ای که فشاردوباره افزایش می یابد به طورنا گهانی متراکم گشته، ترکیده وله می شوند.به دلیل غلیان موضعی وپیدایش همین حباب ها وحفره های ناشی ازخلاء دینامیکی است که این پدیده را کاویتاسیون(حفره زائی) یا گاهی خلاء زائی می نامند. عمل ایجاد بخارآب ویا متصاعد شدن گازهای محلول درآب یا مخلوط این دو، واتساع ومتراکم شدن واز بین رفتن آنها در مدت زمان بسیار کوتاهی در حدود یک صدم وحتی یک هزارم ثانیه انجام می گیرد، بنا بر این طول عمرحبابها بسیارکوتاه، وحالت کاویتاسیون نیز خیلی ناپایداراست.
حبابهای مذکوربه همراه جریان مایع منتقل شده ودر تماس با جدارهای جامد متراکم می گردد، ذرات مایع درجستجوی پرکردن یک چنین خلاءهای موضعی با سرعت زیاد به مرکزاین حفره ها برخورد کرده وبا ترکاندن وله کردن آنها موجب ایجاد پدیده ضربه قوچی موضعی می گردند. یعنی فشار به طورموضعی سریعاً وبه مقدار خیلی زیاد (تا 1000اتمسفر) افزایش می یابد که درنتیجه نیروی خیلی زیاد با فرکانس بیشتر فرسایش وتخریب جدارهای جامد را بدنبال خواهد داشت. گفتنی است که فرسایش جدارها نه درمحل تشکیل حبابها، بلکه درمحل متراکم وله شدن وترکیدن آنها انجام می گیرد. وقوع کاویتاسیون با صدا،ارتعاش وتکان همراه بوده وعملاً باید درلوله ها، ماشینهای آبی وسایر سیستمهای هیدرولیکی از بروز آن جلو گیری نمود. زیرا که وقوع کاویتاسیون در تماس با سطوح آنها انجام می گیرد ودرثانی ازقدرت وراندمان سیستم به مقدارقابل توجهی می کاهد، آثار کاویتاسیون دردستگاههایی که دارای قسمتهای همگرا- واگراهستند نظیرشیرها، دریچه ها، دیافراگم ها لوله وانتوری ونظایر آنها به چشم می خورد.
زیرا که در این قسمتها، سرعت جریان درجهت جریان به مقدارزیادی افزایش یافته ودرنتیجه طبق معادله انرژی، فشاردرآنجا کاهش میابد. دربعضی موارد حتی با ثابت ماندن مقطع لوله وقتی درامتداد جریان، ارتفاع لوله افزایش میابد فشار کاهش پیدا می کند.
کاویتاسیون درسرریزهای سدهای بلند نیزمخصوصاً در سطوح با شعاع انحناء کمتر(گفتنی است که در مناطق با شعاع انحناءبسیار کم Rشتاب گریز از مرکز
V2 / rبه مقدارزیادی افزایش و فشارموضعی به مقدارقابل توجهی کاهش میابد) و در محلهایی که به علت شرایط خاص، رگه جریان ازجدارجدا می شود بروزمی کند. ممکن است این پدیده درماشینهای آبی مخصوصاًدرورودی مایع به پروانه پمپ، ودرخروجی مایع ازچرخ متحرک توربینهای باعکس العمل نظیر توربین فرانسیس وکاپلان ظاهرمی شود. چنانچه پمپ چند طبقه باشد دراین صورت پدیده کاویتاسیون درطبقه اول آن بروزمی کند .
2- کاویتاسیون درلوله ها
وقوع این پدیده درلوله ها ممکن است در نتیجه افزایش سریع سرعت ویا افزایش ارتفاع با ثابت ماندن قطرلوله انجام پذیرد. درحین جریان مایع درداخل لوله شکل (1) درمقطع تنگ شده آن، سرعت V افزایش یافته، درحالی که فشارآن کاهش میابدs↓,v↑,p↓). (چنانچه فشار مطلق ( pv= pabs)، دراین منطقه از جریان حبابهای بخارآزاد شده وگازهای محلول درآن متصاعد می گردد. درقسمتی از لوله که مقطع گشاد می گردد، سرعت کاهش یافته وفشارافزایش میابد (s↓,v↑,p↓) ودرنتیجه تبخیرمتوقف شده، حبابهای بخارایجاد شده به طورکامل یا جزئی متراکم گردیده وگازهای متصاعد شده کم کم ازبین می روند.
کاویتاسیون در یک لوله همگرا- واگرا
اگربا ثابت ماندن مساحت مقطع جریان S، ارتفاع Z ، لوله درجهت جریان افزایش یابد، فشار Pکاهش پیدا می کندs=cte,z↑,p↓)).برای بیان مطلب، حالتهای مختلف وضعیت قرارگرفتن لوله نسبت به خط پیزومتریک را مطابق شکل (2) درنظرگرفته وچگونگی تغییرات فشار را درداخل لوله مورد بررسی قرارمی دهیم. فرض می کنیم که مایع ازمخزن بزرگ Rتوسط لوله ای با مساحت سطح مقطع ثابت به مخزن بزرگ R' جریان دارد، با صرف نظرازافت انرژی موضعی وارتفاع نظیرانرژی سینتیک، خط پیزومتریک نسبی تقریبی AA'را که دوسطح آزاد مایع مخازن مذکوررا بهم وصل می کند، ترسیم، ونیز خط پیزومتریک مطلق BB'را که به فاصله ارتفاع نظیرفشاراتمسفرm 33 /10=pa / γ = ha ازخط پیزومتریک نسبی قراردارد رسم کرده وحالتهای زیر را مورد بر رسی قرارمی دهیم :
الف-اگرمثل حالت یک، لوله R f R'کاملاً درزیرخط پیزومتریک نسبیAA'
قرارگیرد دراین صورت مقدارفشاردرتمام طول مسیرجریان مثبت بوده و
به مقدار h / γ = p بیشترازفشاراتمسفرخواهد بود.
ب- چنان چه وضعیت استقرارلوله مثل حالت دوم، یعنی به صورت RabcR'
باشد درقسمت abc لوله واقع بین خط پیزومتریک نسبیAA' وخط بارکل نسبی،فشارکمترازفشاراتمسفربوده ودراین منطقه خلاءوجود خواهد داشت.
ج- اگرلوله مثل حالت سوم، یعنی Ra'b'c'R'بوده وازخط بارکل نسبی مربوط به مخزن بالا دست Rبلندترولی ازخط پیزومتریک مطلق پایینترباشد دراین صورت لوله مثل سیفون عمل خواهد کرد ودر داخل لوله، مایع به شرطی جریان خواهد داشت که لوله قبلاً پرازمایع بوده باشد. دراین حالت نیزدرقسمت بالای خط پیزومتریک نسبی لوله یعنی a'b'c'خلاء ایجاد خواهد شد.
د- اگرلوله مثل حالت چهارم؛ یعنی به صورت Ra''b''c''R' بین خط پیزومتریک مطلق BB' وخط بار کل نسبی واقع می شود، دراین صورت بدون نیاز به عمل سیفون کردن، مایع یا قسمتی از سطح مقطع ترشده لوله با دبی مربوط به J' به طور نامنظم جریان یافته وخط پیزومتریک مطلق به صورت BEE'B'درمی آید. بنابراین فشارمطلق بین E' وE برابربا صفرمی شود.


دانلود با لینک مستقیم