نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله تعیین کنترل بهینه پلیمریزاسیون MMA در راکتور نا پیوسته

اختصاصی از نیک فایل دانلود مقاله تعیین کنترل بهینه پلیمریزاسیون MMA در راکتور نا پیوسته دانلود با لینک مستقیم و پر سرعت .

 

تعیین کنترل بهینه پلیمریزاسیون MMA در راکتور نا پیوسته غیر هم دما با استفاده از آغاز دو عاملی

 

 چکیده
در این اثر ، بیهنه برای پلمیزه میل متاکریلات رادیکال آزاد را با استفاده از آغاز گر دو عاملی در راکتور نا پیوسته غیر همه ما تعیین می کنیم0 مدل حالت متغییر این پروسه به کار می رود. چهار هدف مختلف کنترل بهینه درک می شود، که هر کدام متغییری فرضی را همزمان در توضیحات دیگری بهینه می کند. دو هدف نخست شامل تبدیل مونومر در زمان عملیاتی مشخص است ، و به حداقل رساندن زمان عملیات برای تبدیل نهایی و مشخص مونرمر. دو هدف آخر شامل به حداکثر رساندن تبدیل مونومر برای تعداد نهایی و مشخص و وزن کردن وزن متوسط مولکولی پلیر است. درجه حرارت سیال تبادل دما در درون روکش راکتور به عنوان تابع کنترل متغیی مستغل تصور می شود. رفع مشخصات متغیی بهینه سازی غیر از زمان مدل متاوت پروسه نا پیوسته در طیفی از متغیر معین مشتق می شود. متد کنترل بهینه مبتنی برالگوریتم برای درک چهار هدف کنترل بهینه استفاده می شوند. نتایج نشان می دهند که کنترل بهینه به طور قابل ملاحطه ای عملکرد پروسه پلیمریزه کردن را ارتقا می دهد.
1 ) مقدمه
پلی (متیل متاکریلات) یا PMMA ترمو پلاستیکی شفاف است که در صنعت تولیدی به علت متاومت بالایش به از هم پاشیدگی وخوردگی فرابخش ، کاربر دو سیعی دارد. PMMA عمر ما با پلیمریزه کردن رادیکال آزاد متیل متاکریلات ( MMA ) در راکتورهای نا پیوسته ای تولید می شود، که به راحتی با نیاز های تولیدی منطبق و وفق پذیر هستند ، و راه انداختن شان هم سهل است. عملکرد راکتورهای نا پیوسته را می توان با بهینه کردن پارامتر های متعدد پروسه که برای دست کاری موجودند افزایش داد. برخی از این پارامتر ها مثلاً، دمای سیال تبادل دما ، با زمان در سبکی بهینه قابل تغییر است تا به چیزی دست پیدا شود که به عنوان کنترل بهینه پروسه نامیده می شود. در کل ، کنترل بهینه پروسه به معنای تعیین برون خطی یا غیر متصل وظایف بهینه است، به کار گیری آنلاین چیزی که به هدف مطلوب می انجامد. لازم به تذکر است که کنترل بهینه ، به آن بهینه سازی دینامیک هم گفته می شود نه کنترل معمول پروسه ( حلقه بسته) است و نه بهینه سازی ، که شامل متغیر ها ست نه وظایف و توابعی نظیر پارامتر های بهینه سازی.
فهرست واژه ها و علائم و اختصارات
A = محیط انتقال گرما- M2
CP= گرمای ویژه آمیزه واکنش دهنده – G/GK
F = کارایی آغازگر
i = غلظت آغاز گر – Mo1/ L
i5 = I آغازین یا اولیه - Mo1/ L
I = I نرمال شده
I = آغازگر
J = شاخص اجرایی
Kd1 = ضریب آهنگ شروع شیمایی – Min-1
Kd2 = ضریب آهمگ شروع شیمایی با راویکال غیر متلاشی شده - Min-1
K P= ضریب آهنگ تکثیر –L/ MolMin
KT = ضریب آهنگ خاتمه - L/ MolMin
KTC = ضریب آهنگ اختمام با ترکیب L/ MolMin
KTd = ضریب آهنگ اختمام با سهم بندی نا متناسب/ L/ MolMin
Ktfm =ضریب آهنگ انتقال زنخیره به مونومر - L/ MolMin
Ktfs = ضریب آهنگ انتقال زنجیره به حلال -- L/ MolMin
Ktfz = ضریب آهنگ انتقال زنجیره به L/ MolMin
m = غلظت مونومر –mol / L
mo = m زمان شده
m = m نهایی
mf = m نهایی
M = مونومر
= وزن مولکولی متوسط – g/mol
= نهایی تعیین شده – g/mol
= وزن مولکولی متوسط - g/mol
= نهایی تعیین شده - g/mol
= وزن مولکولی مونومر - g/mol
= پلیمر مررده طول زنجیره ها
= پلیمر مرده از طول زنجیره ای 1، با یک پروکسید غیر متلاشی
= پلیمر مرده از طول زنجیره ای 1، با دو پروکسید غیر متلاشی
= رادیکال آغازگر
= رادیکال آغازگر با یک پروکسید غیر متلاشی
= رادیکال طول زنجیره ای 1 ، با یک پروکسید غیر متلاشی
= رادیکال طول زنجیره ای 1 ، با یک پروکسید غیر متلاشی
= رادیکال طول زنجیره ای k
= رادیکال طول زنجیره k ، با یک پروکسید غیر متلاشی
s = غلظت حلال، mol/ L
= s اولیه - mol/ L
= s نرمال شده
S = حلال
t = زمان – min
= زمان نهایی و تعیین شده عملیات – min
T = درجه حرارت واکنش دهنده ها (یاراکتور) -
= محدوده فوقانی دما -
= T نرمال شده
= دمای سیال و مادر روکش راکتور-
= محدوده فوقانی -
= محدوده پایینی -
U = ضریب انتقال گرما برای دیواره و روکش راکتور –mink J/ m2
V = حجم واکنش دهنده های درون راکتور – L
= V اولیه – L
= V نرمال شده
= تبدیل مونومر – درصد
= X نهایی تعیین شده
= j امین متغیر حالت
z = غلظت آغازگر – mol/ L
= z نرمال شده
Z = بازدارنده
Z = رادیکال بازدارنده غیر فعال
نمادهای یونانی
= گرمای پلیمریزاسیون – J/ mol
= j امین لحظه از رادیکال پلیمر زنده
= نرمال شده
= j امین لحظه از رادیکال پلیمر زنده با یک پروکسید غیر متلاشی
= نرمال شده
= j امین لحظهی پلیمر مرده
= j امین لحظه از پلیمر مرده با یک پروکسید غیر متلاشی
= نرمال شده
= j امین لحظه ی پلیمر مردهبا دو پروکسید غیر متلاشی
= نرمال شده
= پارامتر مورد استفاده در نرمال کردن لحظات رادیکال و پلیمر
Pm = چگالی مونومر - g / L
PP = چگالی پلیمیر - g / L
Ps = چگالی حلال - g / L
به کارگیری بهینه سازی منجر به کنترل بهینه است، و انعطاف پذیری افراطی و ظرفیت های افزایش یافته ای را برای درک اهداف پروسه با عملکردی بالا تر فراهم می کند . در مجموع با افزایش در محاسبه توان ، و گسترش تکنیک های کنترل بهنه هی کاراتر ، تحقیقات در کنترل بهینه ی پروسه های صنعتی برای رسیدن به برتری شروع شده است.
خیلی قبل تصدیق شد که عملکرد راکنور های نا پیوسته ، و مشخصات تولیدی شان قویا به دمای واکنش وابسته است . مطالعات کنترل بهینه بسیاری در راکتور های نا پیوسته درجه حرارت های بهینه را معلوم کرده ، و در مورد طراحی راکنور دید گاههای عمیق تر و عملکرد بهینه راکتور را فراهم کرد. اند در موضوع پلیمریزه کردن نا پیوسته ، محتقان بسیاری از کنترل بهینه برای به حداقل رساندن زمان عملیات ، و تولید پلیمر با تعداد دلخواه و وزن مولکولی متوسط استفاده کرده اند.
در مطالعه فعلی، ما بر کنترل بهینه پلیمریزه کردن نا پیوسته mmA متمرکز می شویم. کنترل بهنه برای پلیمریزه کردن نا پیوسته mmA اولین بار توسط کنیگ و اسکاتس برسی شد. ایشان از هماند سازی های آزمون و خطابر مبنای فرضه حالت پایا برای غلظت رادیکال ، و مدل اثرژل تجربی برای پلیمریزه کردن استفاده کردند. با در نظر گرفتن دمای روکش به عنوان تابع زمانی دو مرحله ای، ایشان زمان قطع و وصل مرحله ای بهینه تحت محدودیت های تبدیل %15 mmA ، و دمای ویژه حداکثری راکتور را تعیین کردند. ار آن زمان ، مطالعات متعددی صورت گرفته در مورد مساله کنترل بهینه برای mmA . در کل ، این مطالعات از حساب دیفرانسیل و انتگرال تغییر در مدل های پلیمریز اسیمون ساده شده و عملی استفاده می کند تا سیاست های کنترل بهینه (به عبارتی، توابع زمانی) نظیر دما، غلظت های آغازگر و مونومر را معلوم کنند. این سیاستها متغیر های مختلف مثل زمان عملیات ، تبدیل مونومر نهایی، وزن مولکولی پلیمر و بس پاشیدگی، در معرض محدودیت های متعدد در پروسه و ویژیگی پلیمیر، را بهینه می کنند.
مطالعه ای جالب به وسیله PonnuswaMy و دیگران انجام شده که سیاستها ی کنترل بهینه برای پلیمریزه کردنmmA نیمه نا پیوسته را معلوم و به لحاظ آزمایش تست کردند. ایشان از حساب انتگرال و دیفرانسیل متغیر برمنبای مدل خاص پلمیریز اسیون استفاده کردند تا معلوم کنند(الف) سیاست غلطت بهینه آغازگر برای به حداقل رساندن زمان عملیات و (ب) سیاستهای دمای بهینه واکنش برای به حداقل رساندن بس پاشیدگی. غلطت نهایی مونومر و وزن مولکولی متوسط پلمیر به عنوان محدودیت های پروسه شناخته شدندو هر چند نتایج تجربی عمرماً با پیش بینی های کنترل بهینه موافق بودند، تناقض ها در تعداد وزن های مولکولی متوسط پلمیر مشاهده شد، در نتیجه محدودیت های مدل پلمیریزه کردن مورد استفاده تسهیل شده را معلوم می کند.
تعدادی مطالعه کنترل بهینه در مورد پلمیریزه شدن MMA با استفاده از راهکارهای ابداعی وجود داشته است. چانگ ولای یک مترکنترل بهینه دو مرحله ای پیشنهاد کردند که اول درجه متوسط پلیمریزه شدن بر مبنای مشخصۀ نهایی را محاسبه می کند، و بعد از مدل پلمیریزه شدن حالت یا استفاده می کند تا کنترل بهیه را با برنامه ریزی غیر خطی تعیین کند. ایشان از این متد برای کنترل بهینه پلمیریزه شدن MMA در راکتور ناپیوسته برای تبدیل نهایی تعیین شده مونومر، تعداد متوسط درجۀ پلمریزه شدن و بس پاشیدگی بهره گرفتند. تیان و دیگران از شبکه های سلسله اعصاب بهره گرفتند تا دمای بهینه برای تعداد وزن مولکولی متوسط، تبدیل مونومر، و بس پاشیدگی برای راکتور پلیمریزاسیون ناپیوسته MMA را تعیین کنند. چاکراوارتی و دیگران به صورت بهینه ای دمای واکنش را به عنوان تابع کنترل زمان برای پلیمریزاسیون ناپیوسته MMA با آغازگر تک عاملی تعیین کردند. هدف مرکب مجموع وزن شده ای از زمان عملیات، و تاوان های تبدیل مونومر و تعداد وزن مولکولی نهایی پلیمر با توجه به ارزش های هدف شان است. علاوه بر اصل pontryagin این، نویسندگان از الگوریتم های ژنتیکی ساده با محدودیت هایی روی ارزش دمایی مجزای واکنش (غیر از اولین) استفاده کردند که در ابتدا حول ارزش دمایی پیشین رندوم شده بود. sphine های جور شده با چنین ارزشهایی برای بدست آوردن کاندیداها برای سیاست دمای واکنش بدون تغییرات افراطی به کار رفت عملیات های متقاطع به طور مناسب برحسب تعداد ارزشهای دمایی مجزا متناظر با زمان عملیات محدود شدند. در مطالعه جالب دیگری، مانکار و دیگران از کنترل بهینه زمان حقیقی بر مبنای الگوریتم های ژنتیک بهره گرفتند تا پلیمریزه شدن حجیم MMA را از آشوب و بهم ریختگی برنامه ریزی شده احیا کنند.
در این اثر، ما کنترل بهینه رادیکال آزاد، پلمیریزه شدن محلول MMA با آغازگر دو عاملی را تعیین می کنیم. درجه حرارت مایع تبادل دما در درون روکش راکتور به عنوان تابع کنترل زمان، یا هر متغیر مستقل خاص وابسته به حذف به کار می رود. مدل دقیق پروسه حالت ناپایا شامل تغییر دما و همین طور حجم راکتور به کار می رود. بنزن به عنوان حلال به کار میرود و فرمامید aso – bis [اگزتیل (سیانووالریل – 4 – بوتیلازو – 4 – t)] n , n' – bis به عنوان آغازگر دو عاملی به کار می رود. این آغازگر در بدست آوردن آهنگ زیاد شروع و وزن های مولکولی زیاد پلیمر بسیار مفید است. یک متد کنترل بهیه مقتدر بر مبنای الگوریتم های ژنتیک جهت تعیین سیاستهای کنترل بهینه به کار رفت. این متد به صورت مکرر از الگوریتم های ژنتیک استفاده می کند که با تغییر سایز گستره تابع کنترل روی مقیاس های خطی و لگاریتمی استفاده می کند، و به صورت موفقیت آمیز روی مسائل کنترل بهینه مورد چالش شامل پلیمریزه شدن تست شده است :
در ذیل معانی اصلی ارائه شده در این کار آمده است :
1 ) تعیین سیاستهای کنترل بهینه با انتقال مناسب مدل پروسه متمایز طوری مستقل آنی است که در آخر پروسه معلوم می شود. (این به پارامتر اضافی امکان می دهد که به صورت همزمان بهینه شود، و انتخاب های عملیاتی گسترده تری با چهار تابع مختلف مصرف در این کار درک شود)؛
2 ) اولین اشتقاق زمانی و بهره گیری از مدل پروسه حالت ناپایا بر مبنای پویاشناسی پلمریزاسیون MMA قبلاً استفاده دشه با شروع دو عاملی. (پویا شناسی واکنش در گذشته فقط با تقریب حالت شبه پایا استفاده شده است)؛
3 ) راهکاری برای ارزیابی تحلیلی jacabians برای راه حل دقیق مدل پروسه ناهمسان.
چهار هدف مختلف کنترل بهینه جهت افزودن عملکرد پلیمریزاسیون MMA به کار می رود. هر هدف یک متغیر را در راستای مشخصه یا برآورده کردن دیگری بهینه سازی می کند. این اهداف عبارتند از : (الف) به حداکثر رساندن تبدیل مونومر در زمان عملیاتی معلوم، (ب) به حداقل رساندن زمان عملیات برای تبدیل مونومر نهایی معلوم شده، (ج) به حداکثر رساندن تبدیلی مونومر برای تعداد نهایی معلوم شده مزن مولکولی پلیمر و (د) به حداکثر رساندن تبدیل مونومر برای وزن مولکولی متوسط مونومر نهایی. درجه حرارت سیال تبادل دما در دورن روکش راکتور به عنوان تابع کنترل استفاده می شود، که بر دمای آمیزه واکنش ا ثر می گذارد.
2 ) مدل ریاضیاتی
مدل ریاضیاتی دقیقی برای پلیمریزه شدن ناپیوسته MMA در راکتور ناپیوسته غیر هم دما با استفاده از آغازگر دو عاملی ارائه می شود. بر مبنای پویا شناسی واکنش ارائه شده در ضمیمه A ، این مدل متشکل از معادلات متغیر حجم (V) و دما (T) واکنش دهنده ها، غلظت مونومر (m)، آغازگر (i)، حلال (s)، بازدارنده (z)، و سه لحظه نخست رادیکال های منظم ( )، رادیکالهایی با یک پروکسید غیر متلاشی ( )، مولکولهای پلیمر مرده ( )، و مولکول های پلیمر مرده با یک و دو پروکسید غیر متلاشی( ) است، این معادلات بر مبنای مکانیزم واکنش پلیمریزاسیون رادیکال آزاد ارائه شده در ضمیمه A است. نمادها در عبارات در فهرست علائم و اختصارات تعریف شدند. مدل بسط یافته ای که در ادامه می آید بسیار سخت و شدید است و در نتیجه انتظار می رود توافقی بهتر را میان نتاج آزمایشی و پیش بینی ها به بار آورد.
(6) تا (1)
برای گشتاورهای رادیکال های منظم
(9) – (7)
برای گشتاورهای رادیکال هایی با یک پروکسید غیر متلاشی
(12) – (10)
برای گشتاورهای مولکولهای پلیمر مرده :
(15) – (13)
برای گشتاورهای مولکولهای پلیمر مرده با یک مولکول پروکسید غیر متلاشی :
(18) – (16)
برای گشتاورهایی از مولکولهای پلیمر مرده با دو مولکول پروکسید غیر متلاشی :
(21) – (19)
بیایید متغیرهای حالت نرمال شده را این طور تعریف کنیم.
که, s0 , z0 V0 , T0 , m0 , i0 به ترتیب ارزشهای اولیه V , T , m , I , s , z هستند، و پارامتری نرمال این گونه بیان می شود :
(23)
که y فرم نرمال شده ای از متغیر حالت، y ، با فاکتور نرمال سازی، y است.
3 ) اهداف بهینه کنترل
بر مبنای مدل ریاضیاتی فوق، چهار حذف کنترل بهینه ای متفاوت برای پلیمریزاسیون MMA ناپیوسته در این قسمت ارائه می شود. درجه حرارت مایع تبادل حرارت در واکنش راکتور (یا درجه حرارت روکش) به عنوان تابع کنترل پارامتر ویژه تلقی می شود. محدودیت نابرابر در فرم محدوده فوقانی به دمای واکنش دهنده ها بدین صورت تقویت می شود.
(24)
دو محدودیت نابرابری دیگر در فرم محدوده های فوقانی و تحتانی درجه حرارت روکش وجود دارد، به عبارتی
(25)
3 . 1 هدف 1
هدف کنترل بهینه تعیین سیاست کنترل برای درجه حرارت روکش است که تبدیل مونومر را در زمان خاص عملیات ( t )به حداکثر می رساند، به عبارتی شاخص عملکرد را.
(26)
در معادله (26)، x تبدیل مونومر است که این طور بیان می شود.
(27)
این هدف به برآرده کردن معادلات (7) – (1)، (10)، (13)، (16)، (19) نیاز دارد؛ یا فرم نرمال شده شان با معادله (23) بیان می شود.
3 . 2 هدف 2
هدف کنترل بهینه تعیین سیاست کنت رل برای درجه حرارت روکش است که زمان عملیات را برای تبدیل مونومر نهایی بیان شده در جملات کاهش کسری در غلظت مونومر ( ) یا به عبارت دیگر شاخص عملکرد به حداقل می رساند.
(28)
این هدف نیاز به تغییر شکل معادلات (21) – (1) دارد طوری که متغیر مستقل کاهشی کسری در غلظت مونومر ( )باشد. معادلات تغییر یافته این گونه بیان می شوند :
(30) – (29)
که زمان به عنوان متغیر حالت جدید است.
3 . 3 هدف 3
هدف کنترل بهینه تعیین سیاست کنترل برای درجه حرارت روکش است که تبدیل مونومر برای وزن مولکولی متوسط نهایی ( ) به عبارتی شاخص عملکرد را به حداکثر می رساند،
(31)
این هدف به برآورده کردن معادلات (21) – (1) نیاز دارد پس از تغییر شکل شان، طوری که متغیر مستقل وزن مولکولی متوسط پلیمر ( ) است. معادلات تغییر شکل یافته این گونه بیان می شوند :
(34) – (32)
معادله دیگر تغییر برای زمان به عنوان متغیر حالت این گونه است.
(35)
3 . 4 – هدف 4
هدف کنترل بهینه تعیین سیاست کنترل برای درجه حرارت روکشی است که تبدیل مونومر برای وزن مولکولی متوسط نهایی پلیمر ، به عبارتی شاخص عملکرد را به حداکثر می رساند :
(36)
این هدف به برآورده کردن معادلات (21) – (1) پس از تغییر شکل شان نیاز دارد طوری که متغیر مستقل وزن متوسط مولکولی پلیمر باشد. معادلات تغییر یافته از این قرارند :
(39) – (37)
معادله دیگر تغییر برای زمان به عنوان متغیر حالت این گونه بیان می شود :
(40)
برای اهداف (2 - 4)، تغییرات فوق از مدل پروسه، معادلات (21) – (1)، تلفیق آن را در گستره ای از متغیر مستقل خاص (که زمان نیست) تا ارزش نهایی معلوم شده اش توانمند می کند.
4 – تلفیق مدل پروسه ناپیوسته
چهار هدف کنترل بهینه فوق الذکر به تلفیق معادلات همترا تغییر با متغیرهای مختلف مستقل (t , ) برای ارزیابی های شاخص عملکرد نیاز دارند. این معادلات بسیار قطعی و غیر خطی اند. در این کار، اینها با استفاده از الگوریتم Bader – Deuflhard نیمه ضمنی و کنترل سایز گامی انطباق به صورت عددی ادغام کی شوند. jacobians تحلیلی برای تلفیق استفاده شد. این معادلات برای ارزیابی jacobian متناسب با هر هدف کنترل بهینه در بخش بعدی فراهم و ارائه می پوشند.
4 . 1 معادلات برای ارزیابی jacobians
معادلات در ارزیابی تحلیلی jacobians برای متغیرهای حالت نرمال شده (برای اهداف 2 - 4) هستند، و زمان بر حسب متغیر مستقل به هدف کنترل بهینه بستگی دارد.با استفاده از ارزشهای اولیه، j y ، و عوامل پایه ای jacobians ، ( ) ، عوانل jacobian به صورت متوالی بدین صورت قابل محاسبه اند.
4 . 1 . 1 jacobian برای هدف 1
برای تمام متغیرهای حالت، عومل jacobian بدین صورت بیان می شوند :
(41)
معادله (41) برای اهداف دیگر کنترل بهینه مشابه است تا زمانی که متغیر مستقل معادلات (21) – (1)، که در آغاز زمان است، به ترتیب برای اهداف 2 , 3 , 4 به تغیر یابد. بعد زمان به متغیر حالت جدید تبدیل می وشد. برای این تغیر شکل، متغیر مستقل جدید باید غیر صفر باشد. jacobians برای اهداف 2 – 4 به صورت متوالی بدین قرار قابل محاسبه می شوند :
4 . 1 . 2 jacobian برای هدف 2
عوامل jacobians برای زمان، متناظر با j = 0 ، بدین گونه بیان می شود :
(43) و (42)
عوامل jacobians برای مابقی متغیرهای حالت، متناظر با j = 0 , 1 , 2, 3, 4, … , 20 بدین گونه بیان می شوند :
(44)
در معادله (44)
(45)
4 . 1 . 3 jacobians برای هدف 3
فرض کنید با j = 21 پیش از تغییر شکل متغیر پیش از تغییر شکل متغیر مستقل هم تراز باشد. سپس عوامل اصلی jacobian برای این طور بیان می شود.
(47) و (49)
در معادله (43)
(48)
پس از تغییر شکل متغیرر مستقل به ، زمان به تغیر حالت جدید (اشاره به معدله (35)) تبدیل می شود. عوامل jacobians برای زمان، همترا با j = 21 این گونه بیان می شود.
(50) و (49)
عوامل jacobians برای مابقی متغیرهای حالت، متناظر با j = 0 , 1 , … , 20 این گونه بیان می شود.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  23  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله تعیین کنترل بهینه پلیمریزاسیون MMA در راکتور نا پیوسته

دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس

اختصاصی از نیک فایل دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس دانلود با لینک مستقیم و پر سرعت .

بهینه سازی پیوسته الگوریتم سیمپلکس برای مسائل برنامه ریزی کسری تکه ای – خطی

 


تعمیم های روش شناخته شده سیمپلکس برای برنامه ریزی خطی در دسترس می باشد . که این روش برای حل مسائل مربوط به برنامه ریزی تکه ای خطی و برنامه ریزی کسری خطی به کار می رود. در این مقاله از روش سیمپلکس برای برنامه های خطی ، برنامه های تکه ای – خطی و برنامه های کسری خطی استفاده می کنیم . نتایج محاسباتی ارائه شده بیشتر بر اساس دیدگاه هایی است که عملکرد الگاریتم در مسائل آزمون تصادفی به دست می آید.
واژه های کلیدی : برنامه ریزی کسری ، روش سیمپلکس ، توابع خطی تکه ای
1- مقدمه
برنامه کسری خطی – تکه ای (plfp) می تواند تعریف شود به صورت
= برای به حداقل رساندن
Ax=b مشروط به اینکه

در اینجا (xj) fi یک تابع محدب خطی – تکه ای پیوسته و ( ) یک تابع معقر خطی تکه ای پیوسته است بطوریکه برای هر راه حل موجه ( ) X= می باشد .
A یک ماتریس m×n از مرتبه سطری کامل ، b یک بردار m بطوریکه bi≥ و =U یک بردار- X می باشد . مسائل شناخته شده برنامه ریزی خطی و مسائل برنامه ریزی خطی – تکه ای (PFP) و مسائل برنامه ریزی کسری خطی (LFP) همگی موارد ویژه ای از PLFP می باشند . فوریور تعمیم توسعه یافته مدل سیمپلکس را در برنامه ریزی خطی برای حل PLP و اسوارپ و ماتریس سیمپلکس مطرح شده را برای گسترش در حل LFP ارائه می دهند . در این مقاله ما به بحث و بررسی روش سیمپلکس برای حل PLFP و تعمیم و استفاده از روش سیمپلکس برای LP ، PLP ، LFP می پردازیم زمانیکه ، x و....و است plfp به plp تقلیل یافته و در این مورد الگاریتم ما به شکل الگاریتم فوریور کاهش می یابد . اگر x ... وj=1 و و به شکل خطی باشد (مثلا ً تکه ای – خطی با دقیقا ً یک تکه خطی ) سپس plfp به lfp و الگاریتم ما به الگاریتم اسوارپ و ماتریس کاهش یافته و تعدیل شده به صورت متغییرهایی گسترش می یابند . زمانی که خطی برای و وx و.... وj=1 باشد برای x و ...و j=1 ، plfp به lp با متغییرهای گوشه دار کاهش یافته و الگاریتم ما به روش سیپلکس معیار با متغییرهای گوشه دار تقلیل می یابد . این الگاریتم ما چارچوب واحدی برای حل مسائل بهینگی عمده فراهم نموده که در این مقاله به خوبی مورد مطالعه قرار گرفته است . مشهور است که plp می تواند به صورت lp با مقدمه ارائه شود . متغییرهای جدید در اینجا یک عدد با نقطه انفصال خطی باشد اگر می باشد . با استفاده از این انتقال ، plfp می تواند به عنوان یک lfp با متغییرهای X+ تنظیم گردد در اینجا یک عدد از نقطه انفصال خطی باشد اگر می باشد .
اما هر lfp می تواند به عنوان یک lp با یک محدودیت اضافی و یک متغییر مازاد تنظیم گردد . در مورد lfp با متغییرهای گوشه دار ، این تغییرات انتقالی در ثابت های گوشه دار در متغییر بالاتر و گوشه های پایین تر به وجود می آیند . عملکرد واضح این متغییر بالاتر و گوشه های پایین تر محدودیت های اضافی x2 را ایجاد می نماید . بنابراین اگر چه یک plfp می تواند به عنوان lp تنظیم شود اما این روش برای عملا ً مناسب نیست چون سایز ناشی از lp می تواند به طور قابل ملاحظه ای بزرگ باشد بخصوص زمانی که ما دارای گوشه هایی در بالا یا پایین در متغییرها می باشیم . مشابه الگاریتم فوریور برای plp ، الگاریتم ما از یک روش مستقیم استفاده می کند که عملکرد آن بر اساس AX=b می باشد . بنابراین مزیت عمده الگاریتم ما ساختار ویژه آن است . در صورتی که A بتواند برای بدست آوردن ضریب انتفاع مورد بهره برداری قرار گیرد . اگر چه الگاریتم ما می تواند به عنوان یک روش درصد شیب ویژه مورد ارزیابی قرار گیرد اما اعداد متناهی غیر قابل تشخیص در تابع هدف به طور موثری توسط طراحی متغییرهای غیر پایه منطبق با نقاط تنظیم می گردند .
در این مقاله به صورت زیر سازمان دهی شده است . در بخش 2 ما به معرفی نمادسازی های مختلف و تعاریف و نتایج پایه می پردازیم ما همچنین به بحث و بررسی تبدیل صورت از PLFP به LFP و LFP به LP خواهیم پرداخت . بخش 3 با الگاریتم ها برای PLFP سروکار دارد . توضیح و تشریح الگاریتم در بخش 4 ارائه می شود . بخش 5 الگاریتم سیمپلکس را برای PLFP با استفاده از نمونه های عددی نشان می دهد . نتایج تجارب محاسباتی مقدماتی در بخش 6 گزارش شده و در نهایت نتایج ملاحظات در بخش 7 ارائه می شود .
2- نشانه گذاری ها ، تعاریف و نتایج پایه
واژه ها و اصطلاحات و همین طور نمادگذاری ها در این بخش معرفی شده و در سراسر این مقاله مورد استفاده قرار می گیرد . اجازه دهید یک نقطه انفصال و نقطه انفصال باشد. اجازه دهید یک آرایش صعودی از عناصر مجزا در هر دوی و خطی باشد . بنابراین و می تواند به این صورت ارائه شود:

و

برای برخی از اعداد حقیقی
چون محدب است و مقعر است ، ما داریم :


تسلسل این توابع به این شکل نشان داده شده است :


از آنجایی که محدب و مقعر است ، انتقال استاندارد برنامه های خطی – تکه ای در برنامه های خطی مورد استفاده قرار می کیرد که به این شکل نشان داده شده است :


Plfp می تواند به عنوان برنامه کسری خطی فرمول بندی شود :
حداقل شده
مشروط براینکه

در اینجا


با استفاده انتقال شناخته شده کارنس و کوپر

این برنامه کسری می تواند به برنامه خطی تقلیل یابد :
تقلیل یافته
مشروط به



توجه کنید که تغییر شکل plfp به lfp یا lp به طور قابل ملاحظه ای مسأله سایز را افزایش می دهد اجازه دهید
مسأله زیر را مورد بررسی قرار دهید

AX=b , مشروط به اینکه

اجازه دهید ارزش بهینگی تابع هدف باشد قبلا ً :

در اینجا S مجموعه راه حل های ممکن است
قضیه زیر در نوشته های برنامه ریزی کسری شناخته شده است که به مورد plfp اختصاص یافته است .
قضیه 1- اجازه دهید یک راه حل بهینه برای plfp و باشد . سپس



بعلاوه یک راه حل بهینه با راه حلی بهینه برای plfp می باشد
قضیه 1 برای ایجاد شرایط بهینگی در روش سیمپلکس ما مورد استفاده قرار می گیرد .
3- الگاریتم سیمپلکس برای plfp
برای بحث و بررسی الگاریتم سیمپلکس برای plfp ما ابتدا نیازمند معرفی مفهوم جواب ممکن بنیادی (Bfs) برای plfp می باشیم . تعاریف ما دقیقا ً از تعریف bfs که توسط فوریور برای plpارائه شده است ، تبعیت می کند . اجازه دهید B یک ماتریس عادی m×m که شامل ستون های m از A می باشد . سپس B یک ماتریس پایه نامیده می شود . اجازه دهید شاخص i امین ستون B در ماتریس A و مجموعه شاخص ستون های B باشد . اجازه دهید به بردار M اختصاص داشته باشد که تطابق مختصات i برای متغییر است اجازه دهید
N={1,2, … , X}\B باشد . متغییرهای متغییرهای پایه نامیده می شود (تطابق با ماتریس پایه B) و N متغییرهای غیر پایه نامیده شده است . متغییرغیر پایه تطابق ارزش ها به نقطه انفصال یا می برد مثلا ً N برای برای متغییر غیر پایه ، اجازه دهید به شاخص اختصاص یابد . اجازه دهید باشد . ما سه وجه یک ساختار پایه می نامیم . ساختار پایه داده شده منطبق با Bfs اختصاصا ً تعریف شده به صورت :


در اینجا A,j ،j امین بردار ستون از ماتریس محدود A می باشد . ما این راه حل را به عنوان مطابقت Bfs با ساختار پایه قرار دادیم اجازه دهید باشد . اگر برای هر i باشد . سپس آن یک Bfs غیر تبهگن است .
قیاس منطقی 2 – اینجا یک راه حل بهینه برای plfp وجود دارد که یک Bfs می باشد
اثبات : اجازه دهید یک راه حل بهینه برای plfp باشد . برای هر j=1,… x یک شاخص همچون انتخاب نمایید . اجازه دهید
اجازه دهید و باشد . سپس هر راه حل بهینه برای LFP به شکل زیر است :
تقلیل یافته
Ax=b , مشروط بر اینکه

یک راه حل بهینه برای plfp است
در Bfs داده شده منطبق با ساختار پایه برای PLFP می باشد ، هر متغییر پایه یک نقطه انتقال از یا است . اجازه دهید به شاخص مثل ، m ... و2و1=i اختصاص یابد . بردار از محور افقی iام به صورت است که بردار با شیب – f منطبق با ساختار پایه می باشد . همچنین بردار – m از محور افقی i که به صورت است بردار محور افقی – g منطبق با می باشد . ارزش متغییر غیر پایه مجاز است که از نقطه انفصال اخیر در جهت گوشه سمت چپ یا جهت گوشه سمت راست تغییر یابد . بنابراین ما دو کمیت که به و اختصاص دارد مورد محاسبه قرار می دهیم که تعریف شده به صورت :


در اینجا Z یک مقدار از تابع هدف در راه حل ممکن پایه می باشد و و منطبق با بردارهای محور افقی f و محور افقی هستند . اگر باشد سپس به عنوان 0 تعریف می شود . به صورت مشابه زمانی که است سپس به شکل 0 تعریف می گردد . صراحتا ً برای همه متغییرهای پایه است . ما را به عنوان گوشه سمت چپ در ارزش کاهش یافته و را به عنوان گوشه سمت راست در ارزش کم شده برای متغییر در نظر می گیریم
قضیه 3 – (معیار بهینگی ) یک راه حل ممکن بنیادی غیر تبهگن در صورتی برای plfp بهینه است اگر و تنها اگر باشد
اثبات . اگر x یک راه حل بهینه غیر تبهگن برای plfp باشد . ما باید نشان دهیم که
باشد . اجازه دهید N شاخص مجموعه متغییرهای غیر پایه و برای باشد ، حالا


در اینجا


فرض کنید برای تعدادی از متغییرهای غیر پایه باشد . راه حل جدید را اینگونه مورد بررسی قرار دهید که


در اینجا یک جزء قرار دادی است .
به طور آشکارا یک راه حل عملی است . چون x غیر تبهگنی که می تواند بدین گونه انتخاب گردد


حالا

ما می دانیم که و به وسیله فرضیات می باشد و به این صورت نشان داده می شود :

این امر بهینگی x را نقض می کند . به طور واضح ما می توانیم این مورد را زمانی که است برای برخی متغییر غیر بنیادی اثبات نماییم .
از طرف دیگر فرض کنید یک Bfs غیر تبهگن می باشد که به صورت وxو...وj=1 و می باشد . ما باید را به عنوان یک راه حل بهینه برای plfp نشان دهیم. ثابت کردن آن به وسیله قضیه 1 تنها کافی است را نشان دهد در اینجا

آشکارا بنابراین است . اگر ممکن است اجازه دهید plp را بررسی نمایید :

مشروط بر اینکه

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  26  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله بهینه سازی پیوسته الگوریتم سیمپلکس

شبیه سازی رفتار لرزه ای خطوط لوله آبرسانی فولادی پیوسته مدفون تحت

اختصاصی از نیک فایل شبیه سازی رفتار لرزه ای خطوط لوله آبرسانی فولادی پیوسته مدفون تحت دانلود با لینک مستقیم و پر سرعت .

امروزه خطوط لوله مدفون در روند زندگی جوامع بشری نقشی اساسی دارند. این لوله ها در معرض خرابی های ناشی از زلزله آسیب پذیرند. لذا ارزیابی عملکرد لرزهای به منظور ایمنی هر چه بیشتر در مقابل حوادث ناشی از زلزله امری ضروری و اجتناب ناپذیر است. در تحقیق حاضر رفتار لوله های مدفون تحت اثر مستقیم زلزله یعنی اثر انتشار امواج زلزله روی خطوط لوله مدفون مورد بررسی قرار می گیرد. برای مدل سازی از نرم افزار آباکوس استفاده می شود که در آن لوله با المان پوسته و خاک اطراف آن با المان پیوسته مدل شده که در آن امکان لغزش بین لوله و خاک نیز وجود دارد. تحلیل لرزه ای مورد استفاده تحلیل دینامیکی تاریخچه زمانی غیرخطی است که در آن از شتاب نگاشت زلزله کوبه استفاده می شود. در این تحقیق تأثیر پارامترهایی مثل قطر، عمق دفن لوله و نوع خاک روی پاسخ های لوله بررسی می شود.

 

سال انتشار: 1394

تعداد صفحات: 9

فرمت فایل: pdf


دانلود با لینک مستقیم


شبیه سازی رفتار لرزه ای خطوط لوله آبرسانی فولادی پیوسته مدفون تحت