نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه ی کنترل فعال سازه با رویکرد فازی با میراگر (ATMD). pdf

اختصاصی از نیک فایل پایان نامه ی کنترل فعال سازه با رویکرد فازی با میراگر (ATMD). pdf دانلود با لینک مستقیم و پر سرعت .

پایان نامه ی کنترل فعال سازه با رویکرد فازی با میراگر (ATMD). pdf


پایان نامه ی کنترل فعال سازه با رویکرد فازی با میراگر (ATMD). pdf

 

 

 

 

 

 

 

نوع فایل: pdf

تعداد صفحات: 178 صفحه

 

نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.

 

پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»

 

چکیده:

امروزه استفاده از سیستم های کنترل مکانیکی به منظور جلوگیری از ارتعاشات سازه های مهندسی عمران در مقابل زلزله بسیار مرسوم گردیده است.این سیستم ها را می توان به چهار گروه کنترل فعال ، کنترل غیر فعال ، کنترل نیمه فعال و کنترل مرکب تقسیم کرد.

در این رساله هدف طراحی سیستم کنترل فعال میراگر و جرم تنظیم شونده  (ATMD) ، به منظور کاهش پاسخ ساختمان های بلند تحت اثر نیروی افقی زلزله می باشد . از آنجایی که منطق فازی در تعیین متغیرهای تصادفی دارای انعطاف پذیری خوبی می باشد ، مقادیر نیروی فعال میراگر و جرم تنظیم شونده فعال با استفاده از منطق فازی بدست آورده می شود.

در این رساله ابتدا مروری بر تحقیقات انجام شده بر روی سیستم های کنترل صورت گرفته ، پس از آن منطق فازی مورد توجه قرار می گیرد.به منظور بررسی عملکرد سیستم کنترل فعال  (ATMD)  معادلات حرکت ساختمان بلند به همراه سیستم کنترل فعال  (ATMD) تحت اثر نیروی افقی زلزله نوشته شده و در فضای حالت حل می گردد.در این پایان نامه برای مقایسه عملکرد کنترل کننده فازی میراگر و جرم تنظیم شونده فعال با سیستم های کنترل کننده فعال سنتی ، نتایج حاصل از کنترل فازی با نتایج حاصل از یک سیستم سنتی کنترل خطی بهینه درجه دو  LQR مقایسه شده است .

 

واژه های کلیدی : ساختمان بلند ، فضای حالت ، منطق فازی ،  فازی میراگر و جرم تنظیم شونده فعال (ATMD) ، کنترل خطی بهینه درجه دو  LQR  .

 

پیشگفتار:

از دیر باز تا به حال بشر دستخوش حوادث بزرگی چون زلزله بر روی زمین بوده است. زلزله همواره ساختگاه زندگی انسان‌ها را دچار تغییر و دگرگونی کرده است. تا به امروز انسان‌ها همیشه سعی بر مهار این نیروی عظیم و خانمان افکن داشته‌اند. با وجود آنکه در این زمینه موفقیت‌هایی نیز حاصل شده با این حال هنوز تعداد زیادی از ساکنین این کره خاکی هر ساله در زیر آوارهای بوجود آمده توسط زلزله مدفون می‌گردند و سازه‌های بسیاری کارآیی خود را پس از زلزله از دست می‌دهند.

این نیروی مهیب در درون زمین و به واسطه حرکت‌هایی که در پوسته ایجاد می‌شود باعث آزاد شدن انرژی زیادی می‌شود که مصنوعات روی زمین را دچار مخاطره می‌کند.

تا به حال آئین‌نامه‌های بسیاری در سراسر دنیا برای محاسبه و ساخت سازه‌های مقاوم در برابر زلزله تهیه شده است و روش‌های بسیاری برای محاسبه این نیرو ارائه شده است که از آن جمله می‌توان روش استاتیکی معادل، شبه‌استاتیکی (یا طیفی)، دینامیکی و ... را نام برد. در تمام این روش‌ها، نیروی زلزله اعمال شده بر ساختمان‌ها توسط آمار و اطلاعاتی که از زلزله‌های قبلی در دنیا یا منطقه ثبت شده‌اند بدست می‌آید و ایمنی سازه‌ها را بر حسب اهمیت سازه و نوع ساختگاه زمین‌شناسی بستر و اطلاعات دیگر تامین می‌کند. اما با این وجود، ممکن است زلزله‌ای که در آینده به هر یک از این سازه‌ها وارد شود با تمام زلزله‌هایی که برای محاسبه مقاومت و پایداری سازه در نظر گرفته شده است متفاوت باشد. زیرا اساساً ماهیت زلزله یک پدیده اتفاقی بوده و رخ داد هر زلزله با تمام زلزله‌های دیگر در سراسر جهان متفاوت است. به همین دلیل پس از محاسبه نیروی زلزله توسط روش‌های ذکر شده روش‌هایی جهت طراحی ساختمان مقاوم در برابر زلزله مطرح می‌شوند. که این روش‌ها را می‌توان به دو دسته کلاسیک (سنتی) و مدرن تقسیم‌بندی کرد.

در روش‌های کلاسیک طراحی بر اساس حداکثر نیروی اعمال شده به ساختمان با ترکیب نیروهای احتمالی که از طریق آئین‌نامه‌های مختلف بدست می‌آید، تک‌تک اجزاء سازه را بر اساس روش مقاومت نهایی یا نیروی حداکثر طراحی می‌کنند. اما در روش‌های کلاسیک امروزی‌تر پایداری سازه با روش طراحی بر اساس عملکرد نیز مطرح شده است که در اینجا مجالی برای شرح این روش‌ها نمی‌باشد.

اما در روش‌های مدرن علاوه بر طراحی سازه به روش کلاسیک از سیستم‌های الحاقی نیز به منظور بالا بردن ایمنی و مقاومت عناصر سازه در برابر بارهای دینامیکی و همچنین اقتصادی کردن اجزاء سازه کمک می‌گیرند.

این سیستم‌ها به چهار دسته عمده بر اساس نوع الحاقشان به سازه و بر اساس نوع سیستمی که جهت کاهش نیروی زلزله در آنها به کار رفته، تقسیم می‌شوند: سیستم‌های کنترل غیر فعال، فعال، نیمه فعال و مرکب.

به طور کلی این سیستم‌ها انرژی زلزله را یا از طریق جذب یا از طریق تغییر در فرکانس سازه مهار می‌کنند و باعث می‌شوند که انرژی زلزله به اجزاء اصلی سازه صدمه نزنند.

این سیستم‌ها را می‌توان بر روی سازه‌های موجود نیز پیاده نمود که در صورت لزوم بعد از رخداد زلزله نیز قابل تعویض و یا تعمیر می‌باشند. با توجه به اینکه سازه‌های غیر مقاوم در برابر زلزله در کشورمان زیاد یافت می‌شود و همچنین با توجه به این نکته که استفاده از سیستم‌های الحاقی به نحو بسیار مطلوبی پاسخ دینامیکی سازه‌ها را کاهش می‌دهد، لذا استفاده از این سیستم‌ها در کشورمان حائز اهمیت می‌باشد.

 

فهرست مطالب:

فصل اول: مقدمه

1-1- پیشگفتار

1-2- زلزله چیست

1-3- سیستم‌های کنترل فعال (ATMD) و غیر فعال (TMD)

1-4- استفاده از منطق فازی در سیستم‌های کنترل

1-5- لزوم انجام تحقیق حاضر

1-6- مراحل انجام پروژه

فصل دوم: مروری بر تحقسقات گذشته

2-1- مقدمه

2-2- مروری بر تحقیقات سیستم‌های کنترل فعال ATMD

2-3- مروری بر تاریخچه تحقیقاتی نظریه مجموعه‌های فازی و زمینه‌های آن در مهندسی عمران

2-3-1- اولین زمینه‌های فکری

2-3-2- دهه 60: ظهور فازی

2-3-3- دهه 70: تثبیت مفاهیم بنیادی و ظهور اولین کاربردها

2-3-3- دهه 90 و سالهای آغازین قرن 21: چالشها کماکان باقیست.

2-3-4- فازی در ایران:

2-3-5- نظریه فازی در مهندسی عمران

2-4- تاریخچه‌ای از الگوریتم ژنتیک

فصل سوم: سیستم‌های کنترل سازه‌ها

3-1- مقدمه

3-2- کنترل غیر فعال (Structural Passive Control)

3-2-1- سیستم‌های جاذب انرژی

3-2-2- سیستم‌های تغییر دهنده فرکانس سازه

3-3- کنترل فعال

3-4 کنترل نیمه فعال

3-5- کنترل مرکب

فصل چهارم: منطق فازی و کاربرد آن در مهندسی عمران

4-1- مقدمه

4-2- مجموعه‌های فازی

4-2-1- تعاریف و مفاهیم مجموعه‌های فازی

4-2-3- نماد گذاری

4-2-4- عملگرهای مجموعه‌ای

4-3- اصل توسعه و روابط فازی

4-3-1- اصل توسعه

4-3-2- حاصل ضرب کارتزین فازی

4-3-3- اصل توسعه بر روی فضای حاصل ضرب کارتزین

4-3-4- رابطه فازی

4-4-5- ترکیب روابط فازی:

4-3-6- اعداد فانتزی

4-3-7- اعداد فازی L-R

4-4- منطق فازی

4-4-1- استدلال فازی

4-4-2- متغیرهای زبانی

4-4-3- قیود زبانی

4-4-4- قواعد اگر – آنگاه

4-4-5- گزاره فازی

4-4-6- شیوه استدلال فازی

4-4-7- روش ممدانی

4-4-8- روش استدلال فازی با استفاده از توابع خطی

4-4-9- استدلال فازی ساده شده

4-5- کاربردهای فازی در مهندسی عمران

4-5-1- سیستم‌های فازی

4-5-2- پایگاه قواعد

4-6-3- ویژگی‌های مجموعه قواعد

4-5-4- موتور استنتاج فازی

4-5-5- فازی ساز

4-5-6- غیرفازی ساز:

4-5-7- کنترل فازی

فصل پنجم : مطالعه عددی

5-1- مقدمه

5-2- ساختمان نمونه

5-3- مدل اجزاء محدود

5-4- معادلات دینامیک سازه

5-4-1- تعاریف

5-4-2- معادله حرکت سیستم

5-4-3- اثر تحریک تکیه‌گاهی ( نیروی زلزله)

5-4-4- ساخت ماتریس میرایی

5-5- شتاب‌های افقی زلزله‌های مورد استفاده

5-6- حل دستگاه معادلات دیفرانسیل

5-6-1- حل کلاسیک

5-6-2- فضای حالت

5-6-3- نوشتن معادلات ساختمان بلند در فضای حالت

5-7- افزودن روابط سیستم‌های کنترل TMD و ATMD به معادلات ساختمان بلند

5-7-1- سیستم کنترل غیر فعال میراگر و جرم تنظیم شونده (TMD)

5-7-2-کنترل میراگر و جرم تنظیم شونده فعال ATMD

5-8- کنترل فعال ساختمان بلند با استفاده از روش LQR

5-9- کنترل فعال ساختمان‌های بلند با استفاده از منطق فازی

5-9-1- سیستم فازی ممدانی با دو ورودی و یک خروجی همراه با جدول جستجوی فازی 5×5 ; (FLC5)

فصل ششم : نتیجه‌گیری و پیشنهاد برای ادامه کار

6-1- نتیجه گیری

6-2- پیشنهاد برای ادامه کار

 

منابع و مأخذ:

 [1] Abdel-Rohaman, M., 1987, Feasibility of active control of tall buildings against wind, ASCE, J. of structural Engng., 113,2.

[2] Abdel-Rohman, M., Lepholz, H.H.E., 1978, Model control of multistory structures, ASCE, J of eng. Mech. Div., 104, 1157-1175.

  [3] Abe, M., Igusia T., 1995, Tuned mass dampers with closely spaced natural freqyancies, E.E.S.D., 24, 247-261.

[4] Ahlawat, A.S., Ramaswamy, A., 2001, Multi-objective optimal structural vibration control using fuzzy logic control system, J. of structural Engng., 127, 11.

[5] Ahlawat, A.S., Ramaswamy, A., 2002, Multi-objective optimal design of FLC diven hybrid mass damper for seismically excitated structures, E.E.S.D., 31, 1459-1479.

[6] Ahlwat, A.S., Ramaswamy, A., 1965, Multi objective control structural vibration control system, ASCE, J. ofstructural Engg., 8, 338-353.

[7] Alkien, I.D., etal, 1993, Testing of passive energy dissipation systems, Ersquake spectra, 9, 3, 335-370.

[8] Altrock, Constantin V., 1997, Fuzzy Logic & Nerofuzzy Applications Explained, 3-4.

[9] Bakule, L., Pulet-Crainiceanu, F., 2003, Decentralized overlapping control design for a cable stayed bridge henchmark, Proc. Of the wind world Conf. on structural control, 2, 869-874.

[10] Blair, B., 1994, Interview with Lotif zadeh, Azarbaijan Inter national, 2, 4, 2-6.

[11] Chag, C.C., Yang, H.T.Y., 1995, Cotrol of building using active tuned mass dampers, ASCE, J. of engg. Mechnics, 121, 3.

[12] Cherry, S., Filliatrault, A., 1993, Sesimic response control of building using friction dampers, Earthquake Spectra, 9, 3, 447-466.

[13] Chung, L.L., Reinhorn, A.M., Soong, T.T., 1988, Experiments on active control of seismic structures, ASCE, J. of Eng. Mech., 114, 241-256.

[14] Clark, A.J., 1988, Multiple tuned mass dampers for reducting earthquake induced building motion, Proc. 9th wourd Conf. of earthquake engineering, Tokyo-Kioto, Japan, 8, 779-784.

[15] Clough, R.W., Penzien, J., 1993, Dynamics of Structures, Secend Edition, Mc Graw-Hill, Inc.

[16] Coello, C.A., Chistiansen, A.D., 2000, Multiobjective optimization of trusses using genetic algorithms, Computers & Structures, 75, 647-660.

[17] Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B., 2002, Evolutionary algorithms for solving multi-objective problem, Kluwer Academic Pblishers, NY.

[18] Constantinou, M.C., Symans, D., 1993, Sesimic response of structures with supplemental damping, J. The Structural design of tall buildings, 2, 77-92.

[19] Dattam T.D., 1996, Control of dunamic response of Sttructures, Symposium on emrerging trends in vibration and noise, Engg., 18-20.

[20] Dejong, K., 1975, Analysis of the behavior of a class of genetic adaptive systems, PHD thesis, University of Michigan.

[21] Fonseca, C.M., Fleming, P.J., 1993, Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization, In Proc. Of the Fith Int. Conf. on genetic Algorithms, Forrest S. (Ed.), San Mateo, CA, Morgan Kaufmann, 416-423.

[22] Frigorian, C.E., Yang, T.S., Popev, E.P., 1993, Slotted bolted connction energy dissipators, Earthquake spectra, 9, 3, 491-504.

[23] Goldberg, D.E., 1989, Genetic algorithms in search, optimization and Nachine Learning, Reading, Addison-Wesley.

[24] Gupa, Y.P., Chandrasekaren, P.R., Absorber system for earthquake excitation, Proc. 4th wourd Conf. of earthquake engineering, Santiago, Chile, 2, 139-148.

[25] Haack, S., 1991, Philosophy of logic, Camberdge University Press, 152-153.

[26] Hartog, J.P., 1956, Mechanical vibratons, McGraw-Hill: New York.

[27] Hesser, G., 1991, Towards an optimal mutation probability in Gas, In H.P. Schwefeland R. Manner, eds, Paraller problem solving from nuture, 496, 23-32.

[28] Holland, J.H., 1975, Adaptation in natural, and Artificial systems, Ann Arboor: The University of Michgan Press.

[29] Igusa, T., Xu, K., 1994, Vibration control using multiple Tuned mass dampers and some design formulas, E.E.S.D., 175, 4, 491-503.

[30] Jansen, L.M., Dyke, S.J., 2002, Semiactive control strategies for MR damper, J. of Engg. Mechanics, ASCE, 126, 8, 795-803.

[31] Karata, H.N., Kobori, T., 1998, Semiactive damper system in large Earthquakes, Proc. Second would Conf. on structural control, Kyoto, 1, 359-366.

[32] Kawamura, H., Ohmori, Kito, N., 2000, Truss topology optimization by a modified genetic algorithm, Department of /architecture, Negoya University, Aichi, Japan.

[33] Kaynia, A.M., Venerziano, D., Biggs, J.M., 1981, Seismic effectivness of tuned mass dampers, J. of Struct. Div. ASCE, 107, 8, 1465-1484.

[34] Kitamura, H., Fujita, T., Teramoto, T., Kihara, H., 1988, design and alaysis of a tower structure with tuned mass damper, Proc. 9th wourd Conf. of earthquake engineering, Tokyo-Kioto, Japan, 8,415-420.

[35] Knowles, J., Corne, D., 1999, The Pareto archived evolution strategy: Anew baseline algorithm for multiobjective optimization, in Proc. Of the 1999 congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 98-105.

[36] Kicer, F.Y., Arora, J.S., 1999, optimal design of H-frame transmission poles for earthquake loading, J.Struct. Eng., 125, 1299-1308.

[37] Mahendra, P.S., Sarbject, S., Luis, M.N., 2002, Tuned mass dampers for response control of torsional buildings, E.E.S.D., 31,749-769.

[38] Marler, R.T., Arora, J.S., 2004, Survey of multi-objective optimzition methods for engineering, Struct. Multidisc. Optim., 26, 369-395.

[39] Micheal, D.S., Steven, W.K., 1999, Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems, E.E.S.D., 28, 37-60.

[40] Morgan, G.Ch., 1998, Fuzzy logic, Routlendge Encyclopedia of Philosophy, 3, first edition, Craig, E.Routledge, London.

[41] Ogata, K. 1982, Modern Control Engineering, Engle wood Cliffs, N.J. Prentice Hall Inc.

[42] Pall, A.S. Marsh, C.1982, Response of friction damped braced frames, ASCE, J. of Structural Division, ST6, 1313-1323.

[43] Pareto, V., 1896, Cours d,economic ploitique, Lausanne, Switzerland, Rouge.

[64] Whittaker, A.S., 1992, UBC/EERC, 89, 2.

[65] Wirsching, P.H., Campbell, G.W., 1974, Minimal structural response under random excitation using the vibration absorber, E.E.S.D., 2, 303-312.

[66] Wu, S.J., Chow, P.I., 1995, Integrated discere and configuration optimization of trusses using GA, Coumputer & Structures, 55,4, 695-702.

[67] Xia, C., Hanson , R., 1992, Influence of ADAS element parameters on building seismic response, ASCE, J. Structural Div., 118.

[68] Yamaguchi H., Harnornchai, N., 1993, Fundamenal charactrastics of multiple tuned mass dampers for suppressing harmonically forced oscillators, E.E.S.D., 22, 51-62.

[69] Yang, N.J., Soong, T.T., 1989, Recent Advances in active control of civil engineering structures, Int., J. of probabilistic Engg. Mechanics, 3, 4, 179-187.

[70] Zadeh, L.A., 1988, Fuzzy logic, IEEE, computer magazine, 21, 4.

[71] Zimmermann, H.J., 1996, FuzzySet Theory and its Applications, third edition, Kluwer Academic Publishers, third edition.

[72] Zitzler, E., Thiele, L., 1998, An evolutionary algorithm for multiobjective optimization: The strength Pareto approach, Tech. Report 43, Computer engineering and federal ins. Of Tech., Zurich.

]73[ آذر، عادل.، فرجی، حجت.، 1380، علم مدیریت فازی، تهران.

]74[ تقدس، حسین.، محمودزاده، فتح الله.، شکرچی‌زاده، محمد. 1383، برآورد ضریب انتشار پذیری کلر در بتن به روش شبکه عصبی فازی، پنجمین کنفرانس سیستم‌های فازی ایران، 223- 231.

]75[ زاهدی، مرتضی.، 1378، تئوری مجموعه‌های فازی و کاربردهای آن، نشر کتاب دانشگاهی.

]76[ سینایی، علی.، حجازی، فرزاد. 1382، بهینه سازی کنترل فعال سازه توسط شبکه‌های عصبی، ششمین کنفرانس بین‌المللی مهندسی عمران، 389-395.

]77[ طاهری، سید محمود.، 1378، آشنایی با نظریه مجموعه‌های فازی، انتشارات جهاد دانشگاهی مشهد، چاپ دوم.

]78[ لوکس، کارو.، وهدانی، شهرام.، 1382، تحلیل اثر تشدید در دره‌های آبرفتی V شکل با استفاده از سیستم نرو فازی، نشریه دانشکده فنی، 37، 1، 63-74.

]79[ مرندی، مرتضی.، باقرپور، محمد حسین.، تحلیل ضریب اطمینان پایداری شیب‌های خاکی با استفده از تئوری فازی، پنجمین کنفرانس سیستم‌های فازی ایران، 635-645.

]80[ ناطق الهی، فریبرز.، 1378، میراگرهای انرژی در مقاوم سازی لرزه‌ای ساختمان‌ها، پژوهشکده بین المللی زلزله شناسی ومهندسی زلزله.

]81[ کاسکو، بارت، 1377، تفکر فازی، مترجمان غفاری، مقصود پور، دانشگاه صنعتی خواجه نصیرالدین طوسی.


دانلود با لینک مستقیم


پایان نامه ی کنترل فعال سازه با رویکرد فازی با میراگر (ATMD). pdf

مطالعه تنظیم بازار جو آبی و دیم استان کرمانشاه

اختصاصی از نیک فایل مطالعه تنظیم بازار جو آبی و دیم استان کرمانشاه دانلود با لینک مستقیم و پر سرعت .

این فایل در 48 صفحه و بصورت word تهیه شده

محتوای گزارش: 

  1. ارائه مبانی نظری برای تدوین مدل قابل برآورد عرضه جو آبی و دیم
  2. ارائه تحلیل از وضعیت تولید، سطح زیر کشت و عملکرد
  3. ارائه تحلیل از عناصر اصلی طرف عرضه مانند هزینه تولید و قیمت فروش محصول
  4. ارائه مدل قابل برآورد عرضه از طریق روش­های اقتصادسنجی و داده­های تلفیقی
  5. ارائه برآورد صورت گرفته از مدل عرضه جو آبی و دیم استان کرمانشاه به تفکیک اثرات قابل ملاحظه در هر شهرستان
  6. ارائه تحلیل مبتنی بر برآورد و تفسیر ضرایب مدل، کشش­ها و ...

 

چکیده:

جو بعنوان یکی از کالاهای کشاورزی در بخش­های مختلف خوراکی و صنعتی نقش آفرینی می­کند. و از جهت تولید نیز همواره برای کشاورزان نقش رقیبی برای تولید گندم بوده است.

در این تحقیق ابتدا به بررسی الگوها و مبانی نظری جهت ارائه یک مدل نظری در بخش عرضه جو پرداخته می­شود، که در این بین نیز به تمامی مطالعات انجام شده در استان­های مختلف کشور و همچنین مطالعات صورت گرفته در خارج از کشور خواهیم پرداخت.

در قسمت­های بعد براساس الگوی تعیین شده عرضه با استفاده از نرم افزار Eviews ، معادله لگاریتمی عرضه جو در استان با روش پنا دیتا و داده­های تلفیقی برآورد خواهد شد و در ادامه پارامترهای جزئی هر شهرستان برای متغیرهای مستقل برآورد گردید.

نتایج حاصل از این فرآیند و برآورد مدل نشان از تابع عرضه جو برحسب قیمت و سطح زیرکشت می­باشد.

فهرست مندرجات:

  1. مقدمه
  2. مبانی نظری و مطالعات انجام شده
  3. روش و الگوی تحقیق
  4. توصیف و معرفی داده های تحقیق

4-1. تولید

4-1-1. تولید جو آبی در سطح استان

4-1-2. تولید جو دیم در سطح استان

4-1-3. تولید جو آبی در سطح شهرستان کرمانشاه

4-1-4. تولید جو دیم در سطح شهرستان کرمانشاه

4-1-5. تولید جو آبی در سطح شهرستان سنقر

4-1-6. تولید جو دیم در سطح شهرستان سنقر

4-1-7. تولید جو آبی در سطح شهرستان صحنه

4-1-8. تولید جو دیم در سطح شهرستان صحنه

4-2. هزینه تولید محصول جو

4-3. قیمت محصول جو

  1. تخمین­های برآورد شده

5-1. معادله جو آبی

5-2. معادله جو دیم

  1. تجزیه و تحلیل

            6-1. جو آبی

            6-2. جو دیم

 نتیجه گیری

 پیشنهادات

 منابع و مآخذ

 پیوستها و ضمائم


دانلود با لینک مستقیم


مطالعه تنظیم بازار جو آبی و دیم استان کرمانشاه

دانلود پاورپوینت ایمنی داربست بندی2

اختصاصی از نیک فایل دانلود پاورپوینت ایمنی داربست بندی2 دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ایمنی داربست بندی2


دانلود پاورپوینت ایمنی داربست بندی2
پاورپوینت ایمنی داربست بندی
این پاورپوینت شامل موارد زیر می باشد:
استفاده از روش های استاندارد ساخت داربست
بر پا کردن، حرکت یا تغییرات بر روی داربستها
حفاظت از سقوط اجسام یا ابزار
به کار گیری افراد ماهر و متخصص
آموزش ساخت داربست مناسب و خطراتی که داربست را شامل می شود
بازرسی داربستها قبل از هر شیفت کاری و بعد از هر گونه تعمیرات
تعیین و اجرای الزامات حفاظت در برابر سقوط
این فایل حاوی 40 اسلاید می باشد

.


دانلود با لینک مستقیم


دانلود پاورپوینت ایمنی داربست بندی2

دانلود 4جلد پسر اژدها سوار

اختصاصی از نیک فایل دانلود 4جلد پسر اژدها سوار دانلود با لینک مستقیم و پر سرعت .

دانلود 4جلد پسر اژدها سوار


دانلود 4جلد پسر اژدها سوار

کتاب پسر اژدها سوار

هر چهار جلد در یک فایل زیپ با فرمت pdf

چهار جلد
۱_اراگون
۲_الدست
۳_بریسینگر
۴_غار ارواح
دوران اژدها سواران به سر امده و جهان به لطف‌ پادشاهی شیطان صفت در حال نابودی است تا اینکه روزی یک جوان به نام اراگون در جنگل چیزی میابد ان چیز که به نظر یک سنگ گرانقیمت است، یک تخم است،تخم اژدها....


دانلود با لینک مستقیم


دانلود 4جلد پسر اژدها سوار

پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf

اختصاصی از نیک فایل پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf دانلود با لینک مستقیم و پر سرعت .

پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf


پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf

 

 

 

 

 

 

نوع فایل: pdf

تعداد صفحات: 140 صفحه

 

نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.

 

پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»

 

چکیده:

در تحلیل های سازه، عموماً فرض بر این است که خاک زیر شالوده صلب بوده و شالوده به زمین به صورت کاملاً گیردار درگیر است، در این فرض نه تنها از انعطاف پذیری خاک، صرف نظر می شود بلکه به امکان بلند شدگی شالوده از سطح زمین توجهی نمی گردد. در حالیکه اگر اندرکنش خاک و سازه در تحلیل ها در نظر گرفته شود، سیستم جدیدی ناشی از برکنش سازه در تکیه گاه انعطاف پذیر تشکیل خواهد شد که رفتار آن متفاوت با حالت قبل خواهد بود. پس از اعمال این اثرات بر روی سازه، مشاهده می شود که تاثیر پدیده اندرکنش خاک و سازه بر روی رفتار سازه، ممکن است بسته به خصوصیات خاک و سازه، به صورت کاهیدگی و تقلیل و یا به صورت تقویت و افزایش باشد و در نظر نگرفتن این رخدادها به عنوان شرایط تکیه گاهی در روش های مقاوم سازی و طراحی سازه های جدید از قابلیت اعتماد به طراحی سازه می کاهد. تا آنجا که بعضی از آیین نامه های طراحی لرزه ای که در مورد سازه های معمولی به کار می روند، کاهش معینی را در بار استاتیکی معادل برای منظور کردن اثر کنش در حالتی که پی ساختمان صلب در نظر گرفته می شود، مجاز می دانند. در مطالعه حاضر، به بررسی اندرکنش خاک و دیوار بنایی، با در نظر گرفتن شرایط بارگذاری جانبی و فشاری متفاوت و همچنین مشخصات مختلف خاک زیر دیوار پرداخته می شود و به تاثیر پارامترهای مختلف خاک بر رفتار دیوار بنایی پرداخته می شود.

 

کلمات کلیدی : اندرکنش خاک و دیوار بنایی- خاک انعطاف پذیر-  بارگذاری جانبی- رفتار دیوار بنایی

 

مقدمه:

ساختمان های مصالح بنایی یکی از قدیمی ترین سیستم های سازه ای هستند که از گذشته های دور تاکنون رایج بوده اند. حدود 70 درصد ساختمان های موجود کشور ما و همچنین در سراسر جهان، ساختمان های بنایی می باشد. تجربه های زلزله های گذشته، به خصوص زلزله بم، آسیب پذیری بسیار زیاد این ساختمان ها را نشان داده است. عدم درک درست از چگونگی تسلیم و رفتار سازه های بنایی و اجزای آن در محدوده غیر ارتجاعی می تواند منجر به بروز اشکالات اساسی در رفتار لرزه ای سازه گردد. به همین دلیل یکی از مهم ترین مسائل جامعه مهندسی، ارزیابی لرزه ای و بهسازی این نوع سازه ها در مقابل زلزله های محتمل می باشد.

پاسخ دینامیکی سازه متاثر از حرکت لایه های خاک زیرین و از طرف دیگر، پاسخ یا رفتار تنش-تغییر شکل لایه های خاک زیرین تحت تاثیر حرکت سازه است. در حالت کلی، نشست پی بعد از اعمال بار لرزه-ای نسبت به حالت استاتیکی تغییر می کند، لیکن در خاک های ماسه ای سست این اثرات از اهمیت قابل توجهی برخوردار است که منجر به تغییر در نیروهای داخلی اعضای سازه (در جهت یا خلاف جهت اطمینان)، نسبت به حالتی که از اثر اندرکنش خاک-سازه صرف نظر می شود، خواهد شد.

اندرکنش بین سازه و محیط خاک تکیه گاهی آن، رفتار واقعی سازه را به طور قابل توجهی در مقایسه با رفتار سازه با تکیه گاه صلب، تغییر می دهد. بنابراین یک مدل کارآمد و با دقت معقول از سیستم اندرکنش خاک-سازه جهت تحلیل سازه مورد نیاز است.

تجربیات گذشته نشان می دهد که خاک زیر پی، بر روی رفتار دینامیکی سازه تاثیر می گذارد. پاسخ دینامیکی سازه حین لرزه های اعمالی، متغیری از نوع خاک بوده، لذا بدون در نظر گرفتن تاثیر آن نمی توان تخمین واقع گرایانه ای از نیروهای اعمالی زلزله بر سازه داشت [1].

همچنین خصوصیات محلی خاک مانند جنس خاک، لایه ای بودن خاک و نیز تغییرات عمق لایه از عوامل موثر بر رفتار لرزه ای سازه می باشد که باید مورد بررسی قرار گرفته و نیز در تحلیل سازه لحاظ گردد [2]. بنابراین به نظر می رسد بررسی رفتار لرزه ای سازه بدون لحاظ نمودن اثر خاک منجر به نتایج واقعی نخواهد شد. در سال های اخیر تحقیقات وسیعی انجام گرفته است تا این اثر دقیق تر مورد بررسی قرار بگیرد. به دلیل وجود پارامترهای بی شماری که اکثراً غیر خطی می باشند [7]. بررسی اندرکنش خاک و سازه را به کمک مدل های غیر خطی خاک اجتناب ناپذیر می سازد.

از جمله مهم ترین مسائل در تحلیل پدیده اندرکنش خاک و سازه، ارائه یک مدل مناسب می باشد. به منظور بررسی پدیده اندرکنش خاک و سازه در زمان وقوع زلزله روش های مختلفی با دقت و پیچیدگی متفاوت جهت ارائه مدل تحلیلی مناسب مطرح شده است. برای زمانی که مدل سازی خاک لایه ای مورد نظر باشد می توان از روش های زیر استفاده نمود [2].

الف- در نظر گرفتن خاک به صورت جرم، فنر و کمک فنر (میرایی)، معدل در پی سازه.

ب- در نظر گرفتن خاک به صورت تیر برشی با جرم پیوسته و یا متمرکز و سختی گسترده.

د- مدل نمودن خاک به صورت مدل اجزاء محدود.

در مواردی که لایه های خاک در جهات افقی و عمودی قرار گرفته باشند و نیز بررسی رفتار غیر خطی خاک ضروری باشد، می توان از مدل اجزاء محدود استفاده نمود تا اثر لایه بندی را در تحلیل، دخالت داد. بدین ترتیب، خطای ناشی از در نظر گرفتن رفتار خطی (ارتجاعی) برای خاک، که در سایر روش های مدل سازی مانند روش تیر برشی وجود دارد از بین خواهد رفت [8]. در این روش می توان علاوه بر مدفون شدگی پی، لایه بندی خاک در جهات افقی و عمودی را نیز در تحلیل وارد نمود. در مدل سازی اجزاء محدود خاک لایه ای جهت اطمینان از صحت پاسخ فرض شده است که خاک طویل و کم عرض باشد.

 

فهرست مطالب:

فصل اول : کلیات

1-1 مقدمه

1-2 اهداف پژوهش حاضر

فصل دوم : مروری بر مطالعات پیشین

2-1 مقدمه

2-2 عملکرد ساختمانهای بنایی در برابر زلزلههای گذشته

2-3 انواع ساختمانهای آجری

2-4 رفتار ساختمانهای بنایی غیر مسلح

2-4-1 رفتار دیوارهای آجری

2-5 مروری بر تحقیقات گذشته و آزمایشات انجام شده

2-5-1 رفتا دیوارهای آجری تحت بارهای یکنواخت

2-5-2 رفتار دیوارهای آجری، تحت بارهای رفت و برگشتی

2-5-3 آزمایشهای بارگذاری دینامیکی

2-5-4 آزمایشهای بارگذاری دینامیکی و استاتیکی

2-5-5 آزمایشهای بارگذاری استاتیکی

2-6 فاکتورهای اثرگذار در دیوارهای برشی بنایی

2-6-1 مسلح سازی

2-6-2 فشار محوری

2-6-3 نسبت ابعاد هندسی

2-6-4 ویژگیهای مصالح

2-7 مروری بر تئوریهای خرابی توسعه داده شده

2-7-1 مروری بر سطوح تسلیم ارائه شده در فضای تنش سه بعدی

2-8 مروری بر پژوهشهای گذشته در روشهای مدل سازی مصالح بنایی

2-9 مروری بر تحقیات انجام شده در روش قاب معادل

فصل سوم : مدل سازی به روش عناصر محدود

3-1 مقدمه

3-2 تحلیلهای غیرخطی در نرمافزار ABAQUS

3-2-1 رفتار غیرخطی مصالح

3-2-2 رفتار غیرخطی هندسی

3-3 مبانی تحلیل صریح

3-3-1 گام زمانی بحرانی

3-4 المان مورد استفاده در مدل سازی عناصر محدود

3-5 معیار تسلیم مورد استفاده برای مصالح

3-6 تعریف متغیرهای سطح جاری شدن و پارامترهای سختشوندگی

3-7 شرایط اولیه و المانها

3-8 معیار تسلیم دراکر پراگر

3-9 معیارهای گسیختگی

3-10 تصدیق مدل براساس مرجع [56]

فصل چهارم : مطالعه پارامتریک جهت بررسی اندرکنش خاک و سازه

4-1 مقدمه

4-2 رفتار درون صفحهای دیوارها و پایههای مصالح بنایی

4-3 روند انجام مطالعات پارامتریک

4- 3- 1 مشخصات نمونههای تحلیلی

4-4 نحوه اعمال بارگذاری

4-5 نتایج بهدست آمده از مدلهای تحلیلی

4-5-1 نتایج بهدست آمده از مطالعات تحلیلی مدلهای F1 تا F7 مطابق بار Load1

4-5-1-1 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای F1 تا F7 با مدلF1  در الگوی بار Load1

4-5-2 نتایج بهدست آمده از مطالعات تحلیلی مدلهای FR1 تا FR7 مطابق بار Load2

4-5-2-2 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای FR1 تا FR7  با مدلFR1  در الگوی بار Load2

4-5-3 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای F و  FRدر دو الگوی بار Load1 و Load2

4-5-4 نتایج بهدست آمده از مطالعات تحلیلی مدلهای S1 تا S4 مطابق بار Load1

4-5-5 نتایج بهدست آمده از مطالعات تحلیلی مدلهای SR1 تا SR4 مطابق بار Load2

4-5-6 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای S و  SRدر دو الگوی بار Load1 و Load2

4-6 نتیجهگیری

4-7 توصیههایی برای مطالعات آتی

 

فهرست جداول:

جدول 4-1 : مشخصات خاک با مدل کلاهکی دراگر پراکر اصلاح شده

جدول 4-2 : مشخصات خاک با مدل دراگر پراکر

جدول 4-3 : الگوهای بارگذاری Load1 و Load2

جدول 4-4 : نتایج تحلیل اجزاء محدود نمونههای F1 تا F7 تحت بارگذاری Load1

جدول 4-5 : تغییرمکان نهایی و نیز لحظه شروع مکانیزم شکست نمونههای F1 تا F7

جدول 4-6 : نتایج تحلیل اجزاء محدود نمونههای FR1 تا FR7 تحت بارگذاری Load2

جدول 4-7 : تغییرمکان نهایی و نیز لحظه شروع مکانیزم شکست نمونههای F1 تا F7

جدول 4-8 : درصد تغییرمکان نمونهها در حالت الگوی بار Load2

جدول 4-9 : نتایج تحلیل اجزاء محدود نمونههای S1 تاS4  تحت بارگذاری Load1

جدول 4-10 : نتایج تحلیل اجزاء محدود نمونههای SR1 تا SR4 تحت بارگذاری Load2

جدول 4-11 : درصد تغییرمکان نمونهها در حالت الگوی بار   Load2به الگوی بار  Load1

 

فهرست اشکال :

شکل 2-1 : رفتار دیوارها تحت بار یکنواخت

شکل 2-2 : ترکهای ایجاد شده تحت بار یکنواخت

شکل2-3 : ترکهای ایجاد شده در دیوار نوع یک

شکل 2-4 : منحنی رفتار دیوار نوع یک

شکل 2-5 : ترکهای ایجاد شده در دیوار نوع دو

شکل 2-6 : منحنی رفتار دیوار نوع دو

شکل 2-7 : اثر ابعاد هندسی در مود خرابی

شکل 2-8 : سطح خرابی بنایی (داناسکار 1985)

شکل 2-9 : پوش خرابی بنایی (ژوک 1995)

شکل 2-10 : منحنی تنش-کرنش بکار رفته توسط پیج 1978 برای فشار تک محوری

شکل 2-11 : سطح خرابی چسبندگی بکار گرفته شده توسط پیج 1978

شکل 2-12 : پوش خرابی برای خرابی چسبندگی (علی و پیج 1988)

شکل 2-13 : نتایج مدل سازی پاستیسیر 2007

شکل 3-1 : حل مستقیم در مقایسه با روش نیوتن رافسون

شکل 3-2 : گام های یک بارگذاری

شکل3-3 : تقسیم گام های بارگذاری به قسمت های مختلف

شکل 3-4 : المان SOLID در نرم افزار ABAQUS

شکل 3-5 : مدل دراکرپراگر اصلاح شده (کلاهکی)

شکل 3-6  : سطح جاری شدن در صفحه انحرافی

شکل 3-7  : نمونه سخت شوندگی مدل کلاهکی

شکل 3-8 : نمودارهای تنش _ کرنش

شکل 3-9 : سطوح تسلیم رفتارهای مختلف

شکل 3-10 : مدل خطی دراکر پراگر و پارامترهای تعریف آن

شکل 3-11 : حدود مقادیر K در صفحه تنش های اصلی

شکل 3-12 : چگونگی سخت شدگی در مدل دراکر پراگر و تعریف زاویه اتساع

شکل 3-13 : نحوه انجام آزمایش سه محوری کششی و فشاری

شکل 3-14 : توابع تسلیم در مدل های خطی، هیبربولیک و عمومی

شکل 3-15 : دستگاه برپایی آزمایش

شکل 3-16 : یک نمونه مدل سازی شده در نرم افزار اجزاء محدود ABAQUS

شکل 3-17 : مقایسه نتایج آزمایشگاهی و عددی

شکل 4-1  : مودهای شکست حاکم بر رفتار دیوارهای با مصالح بنایی

شکل 4-2 : مشخصات ابعاد نمونه

شکل 4-3 : نمونه مدل سازی شده در نرم فزار المان محدود ABAQUS

شکل4-4 : مکانیزم شکست برای نمونه  F1

شکل 4-5 : نمودار تغییرمکان محل اعمال بار فشاری

شکل 4-6 : نمودار انرژی نمونه F1

شکل 4-7 : نمودار تغییرمکان مدل های F1 تا F7

شکل 4-8 : نمودار انرژی مدل های F1 تا F7

شکل 4-9 : مکانیزم شکست نمونه F7

شکل 4-10 : نسبت تغییرمکان نهایی سایر نمونه ها به نمونه F1

شکل 4-11 : مکانیزم شکست نمونه FR1

شکل 4-12 : نمودار تغییرمکان نمونه FR1 در طول بارگذاری

شکل 4-13 : نمودار انرژی نمونه FR1

شکل 4-14 : نمودارهای تغییرمکان مدل های FR1 تا FR7

شکل 4-15 : نمودارهای انرژی مدل های FR1 تا FR7

شکل 4-16 : مکانیزم شکست برای نمونه FR7

شکل4-17 : نسبت تغییرمکان نهایی سایر نمونه ها به نمونه FR1

شکل4-18 :  نسبت درصد تغییرمکان نمونه ها در حالت الگوی بار  Load2به الگوی بار  Load1

شکل4-19 : مکانیزم شکست برای نمونه  S1

شکل4-20 : نمودار انرژی برای نمونه  S1در طول بارگذاری

شکل4-21 : مکانیزم شکست برای نمونه  S2

شکل 4-22 : مکانیزم شکست برای نمونه  S4

شکل 4-23 : تغییرمکان نمونه ها در مراحل بارگذاری

شکل 4-24 : نمودار انرژی نمونه های S2  و S3 و S4

شکل 4-25 : مکانیزم شکست نمونه SR1

شکل 4-26 :  نمودار انرژی نمونه SR1

شکل 4-27 : مکانیزم شکست نمونه SR2

شکل 4-28 : مکانیزم شکست نمونه SR3

شکل 4-29 : مکانیزم شکست نمونه SR4

شکل 4-30 : نمودارهای تغییرمکان مدل های SR1 تا SR4

شکل 4-31 : نمودارهای انرژی مدل های SR1 تا SR4

شکل4-32 : نسبت درصد تغییرمکان نمونه ها در حالت الگوی بار  Load2به الگوی بار  Load1

 

منابع و مأخذ:

  1. قناد، م. ع.، 1379، "اثر برهم کنش خاک و سازه بر طراحی ساختمان ها در برابر زلزله"، مجله زمین لرزه، ش.هشتم، ص. 14-20.
  2. برگی، خ.، 1379، "اصول مهندسی زلزله"، موسسه انتشارات و چاپ دانشگاه تهران، چاپ سوم.
  3. "دستورالعمل بهسازی لرزه ای ساختمان های بنایی غیر مسلح موجود"، 1386، سازمان مدیریت و برنامه ریزی، نشریه ش.376.
  4. بربریان، ا.، 1374، "اولین کاتالوگ زلزله و پدیده های طبیعی ایران زمین"، انتشارات موسسه بین-المللی زلزله شناسی و مهندسی زلزله، تهران.
  5. مقدم، ح.، 1373، "طرح لرزه ای ساختمان های آجری"، انتشارات دانشگاه صنعتی شریف، تهران.
  6. ناطقی الهی، ف.، کوهیان افضلی، ر.، 1375، "مقاوم سازی ساختمان های آجری غیر مسلح موجود"، گزارش موسسه بین المللی زلزله شناسی و مهندسی زلزله، تهران.
  7. Kramer, L., 1996, “Geotechnical Earthquake engineering.”, Prentice Hall.
  8. Wolf, J., 1997, “Spring-Dashpot-Mass Models for Foundation Vibrations.”, Earthquake Engineering and Structural Dynamics, Vol.26, pp.931-949.
  9. Clough, R.M., Gulkan, P., 1979, “Shaking table of study single-story masonry houses.”
  10. Scawthron, C.A., 1986, “Relative benefits of alternative strengthen methods for law strength masonry building.”, Proceeding of 3rd U.S Nathional Conference on Earthquake Engineering.
  11. Tomazovic, M., Modena, T., 1990, “The influence of structural layout and reinforcement on the seismic behavior of masonry building: An experimental study.” The Masonry Journal, Vol.9.
  12. Paulson, T., Abrams, D., 1990, “Measured inelastic response of reinforced masonry building structure to earthquake motions.”, SRS, No.555.
  13. 18 Pomonis, A.,Taylor, c., 1992, “Shaking table tests on strong motion damaging upon unreinforced masonry.”, Proceeding Of The 10th World Conference Earthquake Engineering., Vol.6.
  14. Tomazevic, M., Lutman, M., 1994, “Influence of floors and connection of walls seismic resistance of old brick masonry houses: part 1: Shaking tests of models C and D.”, ZRMK/P1, Ljubljana.
  15. Magnes, G., Calvi, G., 1994, “Shaking table tests on brick masonry walls.”, Proceeding Of The 10th World Conference Earthquake Engineering.
  16. Costley, A., Abrams, D.P, 1996, “Dynamic response of unreinforced masonry building with flexible diaphragms.”, NCEER- 96-0001.
  17. Calvi, M., Magenes, A., 1994, “Large scale seismic testing of an unreinforced masonry building.”, Proceeding Of 5th U.S National Conference On Earthquake Engineering, Vol.1.
  18. Bendetti, D., Castoldi, A., 1998, “ Dynamic and static experimental analysis of masonry buildings.”, Proceeding of 7th European conference on earthquake engineering.
  19. Calderini, Ch., Cattari, S., 2009, “In-plane strength of unreinforced masonry piers.”, Earthquake Engineering and Structural Dynamics, Vol.38, pp.243-267.
  20. Mullins, P.J., O`Connor, C., 1994, “The capacity of unreinforced unbounded brick shear walls.”, 10th International Brick/Block Masonry conference, Calgary, Canada, pp.1037-1046.
  21. Lotfi, H.R., Shing, P.B., 1991, “An appraisal of smeared crack models for masonry shear wall analysis.” , Computers and Structures, Vol. 41(3): pp.413-425.
  22. Maleki, M., El-Damatty, A., Hamid, A., Drysdale, R.G., 2005, “Finite element analysis of reinforced masonry shear walls using smeared crack model.”, Proceeding of the 10th Canadian Masonry Symposium.
  23. Page, A.W., 1982, “An experimental investigation of the biaxial strength of brick masonry.”, 6th International Brick Masonry Conference, Rome, Italy., pp.3-15.
  24. Dhanasekar, M., Kleeman, P.W., Page, A.W., 1985, “Biaxial stress-strain relations for brick masonry.”, Journal of Structural Engineering, ASCE, Vol.111(5), pp.1085-1100.
  25. Zhuge, Y., 1995, “Nonlinear dynamic response of unreinforced masonry under inplane lateral loads.”, PhD Thesis, Queensland University of Technology, Australia.
  26. Lourenco, P.B., 1996, “Computational strategies for masonry structures.”, PhD Thesis, Delft University, Netherlands.
  27. Page, A.W., 1978, “Finite element models for masonry.”, Journal of structural Divisions, ASCE, Vol.104(8), pp.1267-1285.
  28. Ali, s., Page, A.w., 1988, “Finite element models for masonry subjected to concentrated loads.”, Journal of Structural Engineering, ASCE, Vol.114(8), pp.1761-1783.
  29. Ghosh, A.K., Made, A.M., Colville, J., 1994, “Finite element modeling of unreinforced masonry.”, 10th International Brick/Block Masonry Conference, Calgary, Canada, pp.61-69.
  30. Shing, P.B., Brunner, j.D., Lotfi, h.r., 1993, “Analysis of shear strength of reinforced masonry walls.”, Proceedings of the 6th North American Masonry Conference, pp.1133-1144.
  31. Riddington, J.R., Noam, N.F., 1994, “Finite element prediction of masonry compressive strength.”, Computers and Structures, Vol.113-119.
  32. Khattab, M.M., Drysdale, R.G., 1994, “Nonlinear modeling of the shear response of grouted and reinforced concrete masonry.”, 10th International Brick/Block Masonry conference, Calgary, Canada, pp.1047-1056.
  33. Lotfi, H.R., Shing, P.B., 1994, “Interface model applied to fracture of masonry structures.”, Journal of Structural Engineering, ASCE, Vol.120(1), pp.63-80.
  34. Lourenco, P.B., Brost, R.D., Rots, J.G., 1997, “A plane stress softening plasticity model for orthotropic materials.” International Journal for Numerical Methods in Engineering, Vol.40, pp.4033-4057.
  35. Sayed-Ahmed, E.Y., Shrive, N.G., 1995, “Numerical analysis of face shell bedded hollow masonry walls subject to concentrated loads.”, Canadian Journal of Civil Engineering, Vol.22(4), pp.802-819.
  36. Zhuge, Y., Thambiratnum, D., 1998, “Nonlinear dynamic analysis of unreinforced masonry.”, Journal of Structural Engineering, ASCE, Vol.124(3), pp.270-277.
  37. Pande, G., Liang, J.X., Middleton, J., 1990, “Equivalent elastic moduli for brick masonry.”, Computers and Geotechnics, Vol.8, pp.243-265.
  38. Bosiljkow, V., 2004, “Structural modeling for the assessment of the load bearing capacity of the masonry.”
  39. Gambarotta, L., Lagomarsino, S., 1997, “Damage models for the seismic response of brick masonry shear walls. Part 2: The continuum model and its applications.”, Earthquake Engineering and Structural Dynamics, Vol.26, pp.441-462.
  40. Toamzevic, M., Turnsek, 1982, “Verification of the seismic resistance of masonry buildings.”, br, Ceram.soc, No.30.
  41. Magnese, G.A., “A method for pushover analysis in seismic resistance of masonry buildings.”, 12WCEE.
  42. Andreas, J. Kappos, Gregory, G. Penelis, Christos, G. Drakopoulos, 2002, “Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings.”, Journal of Structural Engineering.
  43. Salonikios, T., Karakostas, C., Lekidis, V., Anthonie, A., 2003, “Comparative inelastic pushover analysis of masonry frames.”, Journal of Structural Engineering, Vol.25, pp.1515-1523.
  44. Cardoso, R., Lopes, M., Bento, R., 2005, “Seismic evaluation of old masonry buildings: Part 1: method description and application to a case-study.”, Journal of Structural Engineering, Vol.27(14), pp.2024-2035.
  45. Vincenzo, M., Malvezzi, R., 2006, “2-D non-linear seismic analysis of a historical masonry building in Ferrara.” Journal of Structural Engineering.
  46. Belmouden, Y., Lestuzzi, P., 2007, “ An Equivalent frame model for seismic analysis of masonry and reinforced concrete buildings.” Construction and Building Materials.
  47. Laurent, P., 2008, “ Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the sap 2000, V.10 code.”, Earthquake Engineering and Structural Dynamics, Vol.37, pp.467-485.
  48. Magenes, G., 2006, “Masonry Building Design In Seismic Areas: Recent Experiences And Prospects From A European Standpoint.”, 1st European Conference On Earthquake Engineering And Seismology, Geneva, Switzerland.
  49. FEMA 306, 1998, “Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings Basic Procedures Manual.”
  50. FEMA 356, 2000, “pre-standard and Commentary for The Seismic Rehabilitation of Buildings.”

 


دانلود با لینک مستقیم


پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf