نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله فلزات و خواص آنها

اختصاصی از نیک فایل مقاله فلزات و خواص آنها دانلود با لینک مستقیم و پر سرعت .

مقاله فلزات و خواص آنها


مقاله فلزات و خواص آنها

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:24

فهرست مطالب:

مقدمه
تعریف فلز ،خواص آن و ساختمان فلزی
عناصر اصلی
فلزات گروه IA
فلزات گروه IIA
فلزات گروه IIIA
فلزات گروه IV A
فلزات گروه VA
عناصر واسطه
فلزات گروه IB
فلزات گروه IIB  
فلزات گروه III B
فلزات گروه IV B
فلزات گروه V B
فلزات گروه VI B
فلزات گروه VII B
فلزات گروهVIII B  
جدول تناوبی
منابع

 

 

مقدمه
پیشرفت زندگی بشر به طور عمده ،ناشی از استفاده وسیع از فلزات گوناگون بوده است .
امروزه میزان کاربرد سالانه فلزات در هر کشور ،نشان دهنده توسعه و رشد اقتصادی آن جامعه است این رشد پیشرفت تکنولوژی در نتیجه هزاران سال زندگی انسان و کسب تجربه های گوناگون در چگونگی استفاده ازفلزات حاصل شده است سر آغاز راه چنین رشد عظیمی ،ساخت مصنوعات فلزی بسیار ابتدایی بوده است . شواهد نشان می دهند که انسان دست کم از پنج هزار سال پیش فلز را شناخته و آن را دستمایه زندگی خود کرده است اهمیت کشف فلز و استفاده از آن در ساخت ابزار به قدری مهم است که دوره هایی از زندگی انسان را به اسم فلزات نام گذاری کرده اند مثل عصر مس ، عصر مفرغ و عصر آهن .
 
تعریف فلز ،خواص آن و ساختمان فلزی
فلزات گروه مهمی از عناصر را تشکیل می دهند که معمولا الکترونهای مدار آخر خود را به راحتی از دست می دهند . در کریستال بندی فلزات الکترونها به راحتی می‌توانند حرکت کنند در نتیجه فلزات هادی خوب الکتریسته هستند و ترکیبات آنها معمولا الکتروسیتهای خوبی تشکیل می دهند فلزات در مدار آخر خود کمتر از چهار الکترون دارند . بنابراین آنها در ترکیباتی که به عنوان فلز وارد می شوند ظرفیتشان چهار ویا کمتر از چهار است مانند کلرید سدیم (NaCl) کلرید کلسیم  
((Cacl2 اکسید آهن ( Fe2o3) III و کلرید قلع IV که در آنها سدیم ، کلسیم ، آهن و قلع به ترتیب با ظرفیتهای یک دو سه و چهار خود وارد شده اند .
فلزات گاهی در ترکیبات به صورت نافلز وارد می شوند مانند دی کرومات پتاسیم ( SnCl4) که در آن کروم به صورت نافلز وبا ظرفیت شش وارد شده است ودر اینجا دیده می شود که ظرفیت آن بیش از چهار است جالب است که فلز مشهور آلومینیوم با وجودی که در ترکیبات فقط به صورت سه ظرفیتی آن بیش از چهار است جالب است که فلز مشهور آلومینیوم با وجودی که در ترکیبات فقط به صورت سه ظرفیتی شرکت می کند ، ولی با همین ظرفیت سه به صورت نافلز دیده می شود ، مانند آلومینات سدیم  . ( NaAlO2)
تمام عناصر فلزی به جز جیوه در دمای معمولی جامد هستند جیوه دارای نقطه ذوب پایین 39 درجه سانتیگراد می باشد تنگستن بالاترین نقطه ذوب را بین فلزات دار است . ( 3400 0c)
تعداد زیادی از عناصر جدول تناوبی فلز هستند فلزات دارای جلالی مخصوص به خود هستند که بسیار زود قابل تشخیص می باشند . همچنین فلزات هادی های خوب الکتریسته و گرما می باشند.
از خوّاص دیگر فلزات می توان از خاصیت چکش خواری آنها نام برد که البته کروم حالتی شکننده دارد فلزات را می توان به صورت ورقه های نازک و طویل در آورد و عملا تولید ورقهای آهنی و فولادی برای ساختن اتومبیلها و قسمت های مختلف ساختمانها ، استفاده از این خاصیت فلزات است بعضی ازفلزات مانند آهن و کروم سخت هستند . در صورتی که فلزاتی از قبیل مس و سرب نرم تری باشند فلزات قلیای بسیار نرم می باشند به طوری که می توان آنها را با چاقو برید . از اختلاط بعضی از فلزها آلیاژ ها به دست می آیند که اکثر آنها خواصی بهتر از فلزات اولیه خود دارند ،مانند مفرغ که از اختلاط مس و قلع به دست می آید و آلیاژی زنگ نزن است ویا آلیاژهای آهن که انواع فولاد سخت را تشکیل می دهند .
خواص شیمیایی فلزات کاملا متغیر است بعضی از فلزات مانند طلا و پلاتین از
نظر شیمیایی غیر فعال هستند این ویژگی طلا و پلاتین همراه با کمیاب بودن آنها باعث شده است که این دو فلز بسیار گران بوده وبرای ساختن زینت آلات به کار روند از طرف دیگر تعدادی از فلزات از قبیل فلزات قلیایی به قدری فعال هستند که در طبیعت به حالت آزاد یافت نمی شوند .


دانلود با لینک مستقیم


مقاله فلزات و خواص آنها

پروژه / پایان نامه آماده: بررسی انطباقات و اتصالات در مونتاژ فلزات و قطعات پلاستیکی (160 صفحه فایل ورد - word)

اختصاصی از نیک فایل پروژه / پایان نامه آماده: بررسی انطباقات و اتصالات در مونتاژ فلزات و قطعات پلاستیکی (160 صفحه فایل ورد - word) دانلود با لینک مستقیم و پر سرعت .

پروژه / پایان نامه آماده: بررسی انطباقات و اتصالات در مونتاژ فلزات و قطعات پلاستیکی (160 صفحه فایل ورد - word)


پروژه / پایان نامه آماده: بررسی انطباقات و اتصالات در مونتاژ فلزات و قطعات پلاستیکی (160 صفحه فایل ورد - word)

 

 

 

 

 

 

 

اتصالات اسنپ (چفتی) یک روش بسیار ساده، اقتصادی و سریع برای متصل کردن دو قطعه مختلف بحساب می آیند. همه اتصالات اسنپی دارای این ویژگی مشترک هستند که یک قسمت بیرون زده از یک قطعه مثلاً یک قلاب، میخ یا مهره در زمان عملیات اتصال، تا اندازه ای منحرف شده و در تورفتگی (زیربرش) قطعه دیگر گیر می کند.

پس از انجام اتصال، مشخصه های متناسب با اسنپ باید به حالت آزاد از تنش برگردد. اتصال ممکن است بسته به شکل تو رفتگی، قابل جدا شدن یا غیرقابل جدا شدن باشد؛ نیروی موردنیاز جهت جداسازی قطعات تا حد زیادی به طراحی بستگی دارد. در نظر گرفتن عوامل زیر در زمان طراحی اتصالات اسنپ، بسیار حائز اهمیت می باشد:

  • بار مکانیکی در زمان انجام عمل سرهم بندی.
  • نیروی موردنیاز برای سرهم بندی.

1-1-        انواعاتصالاتاسنپ

انواع بسیار زیادی طراحی اتصالات اسنپ وجود دارد.

پلاستیک ها بعلت سطح بالای انعطاف پذیریشان معمولاً مواد مناسبی برای این تکنیک اتصال بحساب می آیند.

در ادامه، احتمالات و انواع متعدد طراحی در چند شکل اصولی محدود شده است. اصول محاسبه برای این طراحی های اصولی ارائه می شوند.

مهمترین موارد عبارتند از:

  • اتصالات سگدست اسنپ

بار در اینجا بیشتر خمشی است.

  • اتصالات U شکل اسنپ

نوع دیگری از اتصال سگدست می باشد.

  • اتصالات پیچشی اسنپ

تنش های برشی حامل بار می باشند.

  • اتصالات حلقوی اسنپ

این اتصالات از لحاظ چرخشی متقارن بوده و دارای تنش های چندمحوری می باشند.

1-1-1-                اتصالات سگدستی اسنپ

چهار سگدست روی ماژول کنترل پنل در شکل 1 نشان داده شده اند که ماژول را توسط قلاب هایشان محکم در جای خود در شبکه نگه داشته اند، ولی درعین حال هرزمان نیاز بود می تواند جدا گردد. یک اتصال اسنپ معتبر و اقتصادی همچنین می تواند توسط تیرک های سفت و محم در یک طرف در ترکیب با قلاب های اتصالی اسنپ در طرف دیگر، ایجاد گردد (شکل 2). این طراحی بخصوص برای اتصال دو نیمه مشابه یک محفظه که باید به آسانی از هم جدا شوند، مؤثر می باشد. اتصال مثبت اسنپ که در شکل 3 نشان داده شده است می تواند نیروهای قابل توجه را انتقال دهد. پوشش می تواند به آسانی از شاسی جدا گردد، با این وجود، بازوهای اتصالی اسنپ نیز می توانند با فشار آوردن بر دو زبانه در جهت پیکان، باز شوند.

مثال نشان داده شده در شکل 4 تشابهات خاصی با اتصال حلقوی اسنپ دارد. با این وجود، وجود شکاف ها بدان معناست که بار غالباً از نوع خمشی می باشد، بنابراین، این نوع اتصال تحت عنوان بازوی سگدست برای اهداف تعیین ابعاد طبقه بندی می شود.

فهرست مطالب

عنوان                                                                                                        صفحه

فصل 1-    مقدمه  1

فصل 2-   انطباقها و تلرانسها 4

2-1-    انطباقات چیست [] 4

2-1-1-     انطباقات Fit: 4

2-1-2-     انطباقات سبک: 5

2-1-3-     انطباقات سنگین   6

2-2-    انطباق توسط عملیات حرارتی (انقباضی) 6

فصل 3-   مونتاژ و اتصالات []. 8

3-1-    پرچکاری و پیچ کاری.. 8

3-1-1-     مثال: 8

3-2-    مدهای اصلی شکست در اتصالات پیچی.. 12

3-2-1-     ارزیابی تنش های مجاز: 15

3-3-    پرچکاری  16

3-4-    پیچکاری  16

3-5-    اتصال چسبی.. 20

3-5-1-    چسبهای مورد استفاده 20

3-5-2-     هندسه اتصال چسبی.. 22

3-5-3-     سایزینگ سطوح چسبی.. 24

3-5-4-     مثالهایی از اتصال چسبی.. 33

3-6-    اینسرتها 33

فصل 4-   اتصالات جوشکاری [ و ]. 37

4-1-    تعریف   37

4-2-    مقدمه  37

4-3-    تقسیم بندی فرآیندهای جوشکاری : 40

4-4-    انواع قوس الکتریکی در جوشکاری : 42

4-5-    شروع یا روشن کردن قوس الکتریکی  ARC initiation : 43

4-6-    وظایف پوشش الکترود : 47

4-7-    طبقه بندی پوشش های الکترود ها : 48

4-8-    نقاط نگهداری: 60

4-9-    جوشکاری قوسی.. 79

4-9-1-     الف- جوشکاری با الکترود شناورSubmerged ArcWelding or SAW)  ) 79

4-9-2-    ب- جوشکاری قوس الکترود  دستی Manual metal are wwlding or mma ) 80

4-10-  چگونگی پوشش دادن الکترودهای MMA.. 83

4-11-  جوشکاری قوسی با گاز محافظ ( Gas shieled arc welding ) 83

4-11-1-   الف – جوشکاری قوس الکتریکی با استفاده ازگاز محافظت کننده  ( جوشکاری با الکترود مصرف شونده ) ( MIG ) . 83

4-11-2-   ب – جوشکاری قوس الکتریکی با استفاده از گاز محافظ والکترود تنگستنی ( Tangstan Inert Gas Weldling ) 84

4-11-3-   ج – جوشکاری قوسی با اتمسفر هیدروژن اتمی محافظ ( AHW )  Atomic Hydrogen Welding.. 86

4-11-4-   د – جوشکار ی با حفاظت گاز دی اکسید کربن ( Co2 – Shild ArcWelding ) 86

4-12-  جوشکاری با گاز ( Gas Welding ) 87

4-13-  جوشکاری زایده ای.. 88

4-14-  جوش پتکه ا ی یا آهنگری.. 89

4-15-  جوشکاری انفجاری.. 89

4-16-  جوشکاری لیزری.. 90

4-17-  جوشکاری الکترونی.. 91

4-18-  جوشکاری اولتراسونیک.... 92

4-19-  جوش مرطوب زیر آب... 93

4-20-  تکنولوژی استفاده از چند لایه جوش.... 94

4-21-  روش Temper-bead  96

4-22-  تکنیک ایجاد لایه محافظ (Puffer-Technik) 96

فصل 5-   اتصالات اسنپ (چفتی) []. 98

5-1-    ویژگی های مشترک... 98

5-2-    انواع اتصالات اسنپ... 98

5-2-1-     اتصالات سگدستی اسنپ... 99

5-2-2-     اتصالات پیچشی اسنپ... 102

5-2-3-     اتصالات حلقوی اسنپ... 103

5-3-    ترکیبی از سیستم های مختلف اتصال اسنپ... 104

5-4-    فرضیات   106

5-5-    نکته های طراحی.. 107

5-5-1-     محاسبات   109

5-5-2-     فرورفتگی مجاز 112

5-5-3-     نیروی خمش    114

5-6-    اتصالات پلی اورتان اسنپ... 115

5-6-1-      نیروی جفت شدگی.. 116

5-7-    مثال محاسباتی 1. 118

5-7-1-     قلاب اتصالی اسنپ... 118

5-8-    مثال محاسباتی 2. 121

5-8-1-     قلاب اتصالی اسنپ... 121

5-9-    اتصالات چرخشی اسنپ... 124

5-10-  اتصالات چرخشی اسنپ... 129

5-10-1-   نیروی خمشی، نیروی جفت شدگی.. 132

5-10-2-   مثال محاسبه اتصال اسنپ حلقوی.. 135

فصل 6-   روش های جوشکاری و اتصال پلاستیک ها 142

6-1-    جوشکاری شیمیایی.. 142

6-2-    جوشکاری حرارتی.. 143

6-3-    جوشکاری با گاز 145

6-4-    جوشکاری چرخان.. 146

6-5-    جوشکاری دی الکتریک.... 147

6-6-    جوشکاری با لیزر 148

6-7-    جوشکاری القایی.. 149

6-8-    جوشکاری با چسب... 150

6-9-    جوشکاری حساس به فشار 151

6-10-  جوشکاری مکانیکی.. 152

فهرست مراجع.. 153


دانلود با لینک مستقیم


پروژه / پایان نامه آماده: بررسی انطباقات و اتصالات در مونتاژ فلزات و قطعات پلاستیکی (160 صفحه فایل ورد - word)

دانلود مقاله فلزات سنگین

اختصاصی از نیک فایل دانلود مقاله فلزات سنگین دانلود با لینک مستقیم و پر سرعت .

 

 

خلاصه فارسی:

 

تعداد 32 نمونه غذا ، آب منابع و عضله ماهی به منظور اندازه گیری فلزات سرب و آهن در فصلهای تابستان و پاییز ، در دو نوبت با فاصله 3 ماه از چهار مزرعه پرورش ماهی قزل آلای رنگین کمان در استان چهارمحال بختیاری اخذ شده و مورد بررسی قرار گرفت .
میزان آهن و سرب به ترتیب در کل نمونه‌های آب مزارع مختلف برابر با 4/4 ± 6/60 و 2/0 ± 5/2 میکرو‌گرم بر لیتر ، میزان آهن و سرب به ترتیب در کل نمونه‌های خوراک مصرفی مزارع مختلف برابر با8/183 ± 4/563 و1/1 ± 3/3 میلی‌گرم بر کیلو‌گرم و همچنین میزان این دو فلز به ترتیب در کل نمونه‌های ماهی مزارع مختلف برابر با
9/3 ± 7/8 و1/0 ± 3/0 میلی‌گرم بر کیلو‌گرم بوده است . با توجه به مقادیر بدست آمده از دو فلز فوق هیچ‌گونه تفاوت معنی‌داری در سطح (05/0 p <) بین خوراک، ماهیان و آبهای مختلف مشاهده نشد ولی در کل ارتباط منطقی بین میزان این دو فلز در غذا و ماهیان تغذیه شده از همان غذا مشاهده گردید بطوریکه بیشترین میزان تجمع فلزات سنگین یاد شده در غذای کارخانه شماره 2 و همینطور ماهیان تغذیه شده از این غذا و کمترین میزان تجمع این فلزات در غذای کارخانه شماره 3 و ماهیان تغذیه شده با این خوراک مشاهده شد .
با توجه به استاندارد های FAO برای فلزات سنگین و مقایسه آن با مقادیر بدست آمده در تحقیق حاضر، میزان این فلزات در آب، غذا و عضلات ماهی از حداکثر مجاز پیشنهادی کمتر می‌باشد. لذا هیچ‌گونه خطری از جانب این منابع متوجه مصرف‌کنندگان بعدی مثل انسان نیست .

 


1-1- بیان مسأله:

 


فلزات سنگین به عنوان یک مسئله خطر ساز از ابعاد مختلف و به طور جدی می‌توانند زیست انسان و سایر موجودات زنده را به خطر بیاندازند. یکی از عمده‌تر‌ین منابع تولید کننده این عوامل سنگ‌های معادن و غبارهای آتشفشانی می‌باشند ولی در کنار اینها انسان خود به اشکال مختلف مانند صنایع رنگرزی، آبکاری فلزات و باطری سازی در انتشار فلزات سنگین نقش دارد(8). حضور این عوامل در محیط زیست در دراز مدت منجر به کاهش توان تولید مثلی آبزیان ، مشکلات تنفسی و عصبی و غیره شده و در ضمن با توجه به تجمع آن در بدن (تجمع زیستی) و انتقال آنها به مصرف کنندگان بعدی از جمله انسان می‌تواند عوارض غیر قابل جبرانی را ایجاد نماید. یکی از منابع مهم انتقال فلزات سنگین خوراک مصرفی ماهیان پرورشی است که با اندازه گیری دو فلز سرب و آهن می‌توان به میزان حضور این عوامل در غذا و احیاناً بالا بودن آنها بیش از حد استاندارد پی برد. همچنین بررسی میزان این فلزات در آب و ماهیان مزارع پرورشی از نظر مقایسه‌ای می‌تواند راه کار مناسبی در نحوه استفاده از این منابع آبی و یا حتی ماهیان مورد پرورش در این آبها به ما بدهد.

 

 

 

1-2- اهداف، فرضیات و سؤالات تحقیق:
1-2-1- اهداف تحقیق:
1- بررسی و اندازه گیری دو فلز سنگین سرب و آهن در چهار نوع خوراک مصرفی، آب و عضله ماهی قزل آلای رنگین کمان استان چهار محال و بختیاری.
2- مقایسه بین میزان فلزات سنگین سرب و آهن در انواع غذا، آب ورودی مزارع و عضله ماهیان مزارع مختلف قزل آلای رنگین کمان .
1-2-2- فرضیات تحقیق:
1- میزان فلزات سنگین سرب و آهن در خوراک مصرفی، آب و ماهیان قزل آلای رنگین کمان بالاتر از حد استاندارد است.
2- میزان فلزات سنگین سرب و آهن در خوراک مصرفی، آب و ماهیان قزل آلای رنگین کمان کمتر از حد استاندارد است.
1-2-3- سؤالات تحقیق:
1- میزان فلزات سنگین سرب وآهن در خوراک ، آب و عضله ماهی قزل آلا چقدر می‌باشد؟
2- آیا میزان فلزات سنگین در آبهای مختلف مزارع پرورشی با هم تفاوت دارد ؟
3- آیا میزان فلزات سنگین بین ماهیان مختلف مزارع پرورشی با هم تفاوت دارد ؟
4- آیا میزان فلزات سنگین غذای کارخانه های مختلف با هم تفاوت دارد ؟

 


1-3- روش تحقیق و پژوهش:

 


در این مطالعه از منابع غذا، ماهی و آب مزارع پرورشی قزل آلای رنگین کمان به منظور اندازه گیری میزان دو فلز سرب و آهن نمونه گیری صورت می گیرد. به ترتیب از چهار نوع خوراک پر مصرف استان چهار محال و بختیاری، در هر کدام از مزارعی که از غذای مورد نظر استفاده می‌کنند نمونه گیری صورت گرفته و از آب و ماهیان همان مزرعه نیز نمونه گیری انجام می گیرد بطوریکه از هر مزرعه یک نمونه آب ورودی ، یک نمونه غذای GFT و دو قطعه ماهی 200 گرمی برداشت شد و سه ماه دیگر نیز همین روال تکرار می شد. بطوریکه با احتساب دو فلز سرب و آهن در هر نمونه ، مجموعاً 16 فلز در غذا، 16 فلز در آب و 32 فلز در ماهیان 4 مزرعه‌اندازه گیری خواهد شد(مجموعاً 64 فلز) برای سرب اسپکترومتری جذب اتمی‌با کوره و برای آهن اسپکترومتری جذب اتمی‌با شعله انجام می‌شود. داده‌های بدست آمده با تست آماری آنالیز واریانس تجزیه و تحلیل و مقایسه میانگین داده‌ها با آزمون آماری دانکن صورت خواهد گرفت.

 

 

 


GFT: به غذای سایز ماهیان دوره رشد گفته می شود.
2-1-فلزات سنگین

 


علاوه بر کربوهیدرات‌ها، لیپیدها، اسیدهای آمینه و ویتامین‌ها برخی از فلزات سنگین برای فعالیت بیولوژیکی سلول‌ها ضروری می‌باشند. برخی از فلزات مانند آهن برای زندگی جنبه حیاتی داشته و گروهی دیگر مانند مس و روی و سرب به مقدار جزئی برای فعالیت آنزیم‌ها ضروری هستند(7). این فلزات به علت داشتن وزن اتمی‌بالا فلزات سنگین نامیده می‌شوند. چنانچه میزان ورود این فلزات ضروری به بدن بیش از حد مورد نیاز باشد باعث ایجاد مسمومیت می‌شوند. فلزات سنگین غیر ضروری و یا فلزات سمی‌نیز در بدن آثار سمی‌تولید می‌نمایند، به طور کلی فلزات سنگین موجود در محیط زیست یک خطر بالقوه برای موجودات زنده به شمار می‌آیند. انسان و حیوانات همیشه در معرض آلودگی با فلزات سنگین می‌باشند اینگونه فلزات با ترکیبات ضروری بدن از قبیل اکسیژن، گوگرد و ازت به صورت گروههایی از قبیلS-S ، SH ، OH ، COO و COOH پیوند برقرار می‌نمایند. بیشتر ترکیبات ضروری بدن از جمله آنزیم‌ها و پروتئین‌ها دارای چنین گروههایی می‌باشند در نتیجه فلزات سنگین موجب وقفه فعالیت آنزیم‌ها و اختلال در سنتز ترکیبات ضروری بدن می‌شوند(6).

 

 

 

 

 

2-1-1- منشأ فلزات سنگین:

 

این فلزات جزء عوامل متشکله طبیعی آب دریاها می‌باشند و مقادیر فراوانی از آنها به صورت طبیعی از طرق متنوعی مانند فرسایش سنگ‌های معادن، باد، ذرات غبار، فعالیت‌های آتشفشانی، رودخانه‌ها و آبهای زیرزمینی وارد دریا می‌شوند. ولی آنچه مسئله ساز است افزایش منطقه‌ای این فلزات به واسطه فعالیت‌های صنعتی انسانی مانند افزایش پساب‌ها و ضایعات صنعتی کارخانجات ،آلودگی‌های نفتی، سموم ، دفع آفات و … می‌باشد(8). این آلاینده‌ها از یک طرف باعث کاهش اکسیژن محلول در آب شده و از طرف دیگر دارا بودن سموم اثر مستقیمی‌بر روی ماهی‌ها داشته و باعث تلفات آنها می‌شود.
آبی که از مناطق آبخیز یا بستر رودخانه‌ها عبور می‌کند، سنگ‌های معدنی یا مواد محلول را با خود انتقال داده و باعث مسمومیت ماهیان قسمت‌های پائین رودخانه می‌شوند این روند سبب شده است که قسمت‌های مشخصی از نهرها، دریاچه‌ها یا سایر آب‌ها از ماهی تخلیه شوند. از موارد دیگری که سبب آلودگی آب‌ها می‌شوند می‌توان از صنایع استخراج سنگ فلزات نام برد که طی بهره برداری از معادن، آب زهکشی آنها دارای مقادیر زیادی فلزات سمی‌است. PH بعضی از این آب‌ها به مقدار کمی‌اسیدی است و سبب افزایش حلالیت فلزات می‌شود به عنوان مثال آب زهکشی معدن زغال سنگ به دلیل اسیدیته زیاد فلزات موجود در بستر معدن را در خود حل می‌کند(7)

 

 

 

 

 

2-2- سابقه تحقیقات در مورد سرب
2-2-1- سابقه تحقیقات در مورد مسمومیت با سرب و اثر آلوده کنندگی آن در انسان
سرب فلزی سنگین خاکستری مایل به آبی رنگ، عدد اتمی 82‌ و نقطه ذوب 327 درجه سانتیگراد است .این عنصر در گیاهان و خاک به مقدار بسیار کم یافت می‌شود. در خاک‌های اسیدی حلالیت آن زیاد شده و برای گیاهان سمی‌خواهد شد(9و11). لذا باران‌های اسیدی به طور غیر مستقیم در افزایش مسمومیت گیاهان و جانوران نقش دارند. از بین تمام ترکیبات سرب تنها تترااتیل سرب که در بنزین به عنوان ماده بالا برنده درجه اکتان مصرف می‌شود در حرارت معمولی اتاق قابل تصعید است لذا از سمی‌ترین ترکیبات سرب محسوب می‌شود. سرب از طریق پوست، دستگاه گوارش و تنفس جذب می‌شود(1). مهمترین راههای ورود سرب به بدن تنفس و پس از آن گوارش می‌باشد. جذب شدن از طریق پوست بستگی به نوع ترکیب آن دارد. ترکیبات معدنی سرب به کندی، در حالی که ترکیبات آلی سرب چون استات و اولئات سرب به خوبی از راه پوست جذب می‌شوند، تتراتیل سرب نیز به صورت مایع یا بخار از راه پوست جذب بدن می‌گردد(4و12).
شایع ترین علت مسمومیت با سرب جذب ذرات سرب موجود در هوا از طریق مجاری تنفسی است به خصوص در صنایعی که گرد و غبار و بخارات و دود سرب تولید می‌شود. جذب سرب از طریق استنشاق در افراد بالغ حدود 10 درصد و در اطفال حدود 40 درصد می‌باشد که حدود 95 درصد آن جذب خون می‌شود و ما‌بقی به دنبال هوای بازدم خارج شده یا در قسمت فوقانی دستگاه تنفسی تجمع می‌یابد و مجدداً بلع می‌گردد. به طور اولیه مسمومیت سرب در بزرگسالان از راه تنفس است(4و12).
تا قبل از سال 1942 تجمع و ذخیره شدن سرب در استخوان‌ها مورد توجه نبوده و وجود آن را در استخوان‌ها در مقایسه با عضلات و نسوج بی اهمیت می‌دانستند. بعدها معلوم شد که ترکیبات معدنی سرب ابتـدا در بافت‌های نرم شامل مغز ، کبــد و ماهیچــه‌ها توزیع و ته نشین شده و به زودی در طول زمان مقدار آن کمتر می‌شود و سپس در بافت‌های استخوانی دندان و مو ذخیره میگردد. ذخیره سرب در استخوان شباهت زیاد به ذخیره کلسیم دارد و به صورت فسفات سرب ذخیره می‌شود. چنانچه غلظت فسفات خون کم باشد سرب در بافت‌های غیر استخوانی ذخیره می‌شود، ویتامین D باعث ذخیره سرب در استخوان شده و هورمون پاراتیروئید موجب کاهش ذخیره در بافت استخوان و افزایش آن در خون می‌شود. سرب اساساً از طریق ادرار و به مقدار ناچیز از طریق مدفوع، عرق و شیر دفع می‌شود. دفع سرب در حیوانات آزمایشگاهی بیشتر از طریق صفرا است(4). آب‌ها به واسطه عبور در مسیر معادن سرب و نیز راه یابی فاضلاب کارخانجاتی چون صنایع باطری سازی، کریستال سازی، رنگ سازی و … آلوده می‌شوند. این آب‌ها موجب تجمع سرب در ماهی و آبزیان میگردد. مطالعات بیانگر ارتباط مستقیم بین غلظت سرب موجود در آب‌ها و لجن و غلظت آن در بافت‌های آبزیان است و از طرف دیگر آبیاری مزارع و مراتع به وسیله این آب‌ها منجر به افزایش میزان سرب در بافت‌های گیاهی و به دنبال آن افزایش میزان سرب در شیر، گوشت و تخم مرغ دام‌ها می‌شود(3).
سرب با بسیاری از ترکیبات ضروری بدن مانند آنزیم‌ها وپروتئینها اتصال برقرار نموده و موجب وقفه در فعالیت آنزیم و اختلال در سنتز پروتئین و غیره می‌گردد. این فلز موجب وقفه فعالیت آنزیم سدیم- پتاسیم- آدنوزین تری فسفات(Na-k-Atpase) گشته و میزان آنزیم ترانس آمیناز افزایش می‌یابد در حالی که این فلز موجب کاهش فعالیت آنزیم آلکالین فسفاتاز و متیل استراز می‌شود(20).
اولیــن عـــلائم مسمومیت ســرب غالباً غیر اختصاصی است به صـورت خستــگی، تهوع، بی اشتهایی، تغییر وضعیت خواب، اسهال، یبوست، افسردگی بروز می‌کند و با افزایش آن در فرد عوارض دیگری چون افزایش فشار خون، تغییر خلق و خو و اختلالات حرکتی،کم خونی ، عوارض عصبی ، آنسفالپاتی و نوریت بروز می کند(1و4). حداکثر میزان سرب برحسب استانداردهای موجود در کشورهای مختلف و بر اساس قوانین غذایی 1979 در آب آشامیدنی 50 میکروگرم در دسی لیتر و در عضله ماهی به میزان 2 میلی گرم در کیلوگرم می‌باشد(11).

 

2-2-2- اثر آلوده کنندگی سرب در آب دریا و ماهیان:
سرب در محیط آب بیشتر در رسوبات بستر تجمع یافته و میزان آن 4 برابر بیشتر از سرب موجود در آب است. این ماده به طور عمده در کلیه، آبشش، عضلات و استخوانها تجمع پیدا می‌کند. طبق گزارش FAO سالانه حدود 2 هزار تن سرب به دریا ریخته می‌شود که به پلانکتونها به ویژه فیتوپلانکتونها که حدود 7% اکسیژن را تأمین می‌کنند صدمه زده و سبب مرگ و میر آنها می‌شود. سرب در هوا، آب و خاک وجود داشته از طریق گردش خون در بافت‌ها رسوب نموده و ایجاد مسمومیت می‌نماید.
سمیت سرب برای ماهی و سایر موجودات آبزی تحت تأثیر کیفیت آب بوده و به قابلیت انحلال ترکیبات سرب و به غلظت‌های کلسیم و منیزیم در آب بستگی دارد به عنوان مثال مشخص شده است که سمیت سرب با افزایش غلظت کلسیم و منیزیم در آب کاهش می‌یابد. مسمومیت حاد سرب ابتدا باعث آسیب به اپیتلیوم آبشش شده و ماهی مبتلا به علت خفگی تلف می‌شود. علائم مشخص مسمومیت مزمن سرب شامل تغییرات تابلوی خونی با آسیب شدید گلبول‌های قرمز و سفید، تغییرات تحلیل رونده بافت‌های پارانشیماتوز و آسیب سیستم عصبی است(7و5). حضور بیش از حد سرب در آب ممکن است باعث محدودیت آنزیمی‌موجود در بافت‌های مختلف بدن شود اما اثر زیادی در تنظیم پتاسیم توسط آبشش ندارد چنین وضعیتی ممکن است بدین علت باشد که ماهیان اغلب در آب‌های تقریباً ایزوتونیک با خونشان زیست می‌کنند بنابراین شیب یا تغییرات زیادی در داخل یا خارج بدن ماهی برای سدیم وجود ندارد(7).
2-3- سابقه تحقیقات در مورد آهن
2-3-1- سابقه تحقیقات راجع به مسمومیت با آهن و اثر آلوده کنندگی آن بر انسان:
شایع ترین شکل مسمومیت به صورت خوراکی است. به طور طبیعی بدن به 4 تا5 گرم آهن نیاز دارد که در نسوج مختلف توزیع شده است. حدود 10 تا 20 درصد از آهن خورده شده از سلول‌های مخاطی دئودنوم و ژئوژنوم به صورت آهن دو ظرفیتی جذب می شود. دفع طبیعی آهن از بدن محدود به 1 تا 2 میلی گرم در روز از طریق خون قاعدگی و پوسته ریزی مخاط دستگاه گوارش است. بدن توانایی دفع آهن را بیشتر از 2 میلی گرم در روز ندارد و از این رو مصرف بیش از حد آهن موجب تجمع آهن در اعضای هدف می‌گردد
و اصولاً خوردن بیش از 30 میلی گرم بر کیلوگرم آهن موجب مسمومیت و بیش از 250 تا 300 میلی گرم بر کیلوگرم آن موجب مرگ می‌شود(1).

 


مکانیسم اثر آهن در ایجاد مسمومیت به 4 فرم است:
1- گشاد شدن پس شریانچه‌ای
2- افزایش نفوذپذیری مویرگ‌ها به علت اثر مستقیم آهن
3- اسیدوز به دلیل آزاد شدن یون‌های هیدروژن
4- آسیب میتوکندری به خصوص در سلول‌های کبد.
اثر آهن بر دستگاه گوارش:
آهن سبب نکروز هموراژیک قسمت‌های ابتدایی دستگاه گوارش و همین طور موجب انفارکتوس قسمت انتهای روده کوچک می‌شود البته تنگی پیلور و انسداد روده از دیگر عوارض دیررس و نادر می‌باشد.
اثر آهن بر کبد:
تأُثیر آهن روی کبد از حالت عدم تغییر تا نکروز هموراژیک اطراف پورت و تغییر وضعیت سلول‌های کوپفر و سلول‌های پارانشیمال متغیر است. آسیب کبدی مذکور می‌تواند موجب هیپوکلسمی، هیپوپروتئینمی و اختلال‌های انعقادی و در نهایت نارسایی کبد بشود(33).
اثر آهن بر قلب و عروق:
تأثیر آن به صورت گشاد شدن انتهای مویرگ و افزایش نفوذ‌پذیری آنها می‌باشد که موجب پر شدن وریدها، کاهش حجم خون و کم شدن برون ده قلب می‌شود. فرآورده آهن ممکن است شامل یکی از 3 نمک فرو(سولفات، فومارات و گلوکونات) باشد مسمومیت براساس مقدار عنصر آهن موجود در نمک(20 درصد در نمک سولفات، 33 درصد در فومارات و 2 درصد در گلوکونات) می‌باشد خوردن بیش از 20 میلی گرم در دسی لیتر عنصر آهن سبب ایجاد مسمومیت گوارشی و خوردن بیش از 60 میلی گرم در دسی لیتر باعث مسمومیت سیستمیک می‌گردد. تظاهرات اولیه مسمومیت ناشی از آهن شامل استفراغ و اسهال خونی و تب و هیپرگلیسمی‌و لکوسیتوز می‌باشد(1و4).

 

2-3-2-اثر آلوده کنندگی آهن در آب دریا و ماهیان:
این عنصر در آب‌های سطحی به اشکال اکسید 2 ظرفیتی یا 3 ظرفیتی وجود دارد و در آب‌های کم دما و واجد آهن، باکتری‌های ته نشین کننده آهن به میزان زیادی روی آبشش‌ها تکثیر یافته و به اکسیداسیون آهن 2 ظرفیتی کمک کرده و کلونیهای رشته‌ای آنها آبشش‌ها را می‌پوشاند ابتدا آبشش‌ها بی رنگ می‌شوند ولی بعداً آهن ته نشین شده و باعث قهوه‌ای شدن کلونیهای رشته‌ای می‌شود ترکیبات رسوب یافته آهن و رشته‌های باکتری‌های ترسیم کننده آن سطح مفید تنفسی آبشش‌ها را کاهش داده باعث آسیب به اپیتلیوم تنفسی و شوک در ماهیان می‌شود(7). حد مجاز آهن برای کپور معمولی کمتر از 2/0 و برای قزل‌آلا کمتر از 1/0 میلی گرم در لیتر آب است(24). گرچه اثرات سمی آهن و نمک‌های آن به ندرت رخ می‌دهد اما اثرات کشنده حضور این مواد در مجاورت طولانی با ماهی در آب‌هایی که به مقدار ضعیفی بافر بوده و PH آنها پایین است قابل توجه است همانطور که ذکر شده تأثیرات غیر مستقیم سمی‌آهن به طور عمده محدود به رسوب هیدروکسید فریک و یا اکسید فریک در روی آبشش ماهی می‌باشد. رسوب هیدروکسید فریک بر روی تخم‌های دارای جنین در حال رشد نیز ممکن است باعث خفگی و مرگ و میر جنین شود دلیل عمده تلفات ناشی از رسوب هیدروکسید فریک بر روی آبشش ماهی به دلیل ممانعت از جا‌به‌جایی اکسیژن و یا در تخم‌های چشم زده به دلیل ممانعت از ورود اکسیژن از طریق پرده کوریون جنین به داخل تخم است(34).
شاپر کلوز(1992) عامل اصلی صدمات ناشی از آهن را رسوب ترکیبات این عنصر بر روی آبشش می‌داند و معتقد است که این رسوب باعث ایجاد مناطق نکروتیک بر روی آبشش ماهی قزل آلای جوان می‌شود. به طور کلی می‌توان ابراز نمود آبهایی که واجد ترکیبات آهن قابل رسوب هستند معمولاً دارای اکسیژن محلول کم ، مقدار زیادی دی اکسید کربن و PH کمتر از 7 می‌باشند هوادهی این آب‌ها باعث کاهش دی اکسید کربن و افزایش اکسیژن محلول می‌گردد و اجازه می‌دهد که آهن به طرف بستر استخر رسوب نماید(32).
طی تحقیقی که توسط کوگی و همکاران (2006) روی ماهی کفال و ماهی خاردار در شمال شرقی دریای مدیترانه در ترکیه انجام شد میزان کادمیوم، مس، آهن، روی و سرب توسط جذب اتمی با شعله در کبد ، آبشش و عضله اندازه گیری و نتایج زیر حاصل شد .
1- به جز سرب بیشترین میزان از هر فلز ابتدا در کبد، سپس در آبشش و بعد در عضله بوده است.
2- آهن ، روی و مس بیشترین فراوانی و کادمیوم و سرب کمترین فراوانی را در بافتهای مختلف داشتند.
3- تغییرات فصلی نیز در میزان فلزات مشخص شد ولی به طور کلی بیشترین میزان برای تمام فلزات در بافت‌های مختلف هر دو گونه ماهی در تابستان مشاهده شد(18).
در تحقیقی که توسط اشرف و همکاران (2006) روی میزان هفت فلز سنگین(سرب ، کادمیوم ، نیکل ، مس ، روی ، کروم و آهن ) در ماهی‌های کنسرو شده ساردین، آزاد و تن که در کشور عربستان مورد استفاده قرار می‌گیرد انجام شد سرب و کادمیوم از طریق اسپکتروسکوپی جذب اتمی تیوپ گرافیتی و نیکل، مس، کروم و آهن با استفاده از اسپکتروسکوپی جذب اتمی‌با شعله تعیین شد.
- میزان سرب در ماهی آزاد برابر با 2/1-03/0 میکروگرم در گرم با میانگین 313/0 میکروگرم در گرم می‌باشد .
- میزان سرب در ماهی تن برابر با 51/0-03/0 میکروگرم در گرم با میانگین 233/0 میکروگرم در گرم می‌باشد .
- میزان سرب در ماهی ساردین برابر با 97/1-13/0 میکروگرم در گرم با میانگین 835/0 میکروگرم در گرم می‌باشد .
مشخص شد که میانگین غلظت سرب در ساردین 4 برابر ماهی تن و به طور کلی میزان فلزات به ترتیب زیر است:
ماهی تن< ماهی آزاد< ساردین
این تحقیقات نشان داد که ماهی کنسرو شده به طور کلی و ماهی تن به طور خاص دارای غلظت‌های مجاز و در چهارچوب سازمان بهداشت جهانی و سازمان خاروبار جهانی از نظر فلزات سنگین هستند(16).
طی مطالعه انجام شده توسط اشمیت و همکاران (2006) خرچنگ و ماهی از شش گونه معرفی عمده(کپور معمولی و گربه ماهی کانال و گربه ماهی سرپهن ماهی خاردار دهان گنده و ماهی خاردار خالدار و کراپی سفید3). در سال‌های 2001 و 2002 در شمال شرق الکاهاما از آب‌های رودخانه اسپرینگ و رودخانه نیوشو که هر دو به 4TSMD تخلیه می‌شوند جمع آوری گردید.
نمونه‌هایی هم از مکان‌های آلوده به مواد معدنی در میژوری شرقی جمع آوری شد و همراه با نمونه‌هایی از مکان‌های مرجع مورد تجزیه و تحلیل قرار گرفت. غلظت فلزات در نمونه‌هایی که به شدت تحت تأثیر مواد معدنی قرار داشتند بالاتر بود و در نمونه‌های مرجع در کمترین حد خود بوده است. غلظت‌ و تراکم فلزات و نیز میزان خطر در ماهی و خرچنگ شاخه‌های آلوده رودخانه اسپرینگ بیش از جریان‌های اصلی رودخانه اسپرینگ یا رودخانه نیوشو بوده است. براساس نتایج حاصل از این بررسی مصرف کپور و خرچنگ را می‌توان با توجه به معیار فعلی میزان سرب، کادمیوم و روی محدود نمود و مصرف گربه ماهی کانال را نیز می‌توان به واسطه میزان سرب محدود نمود غلظت فلزات در گونه میکروپتروس5 و کراپی6 به طور یکنواختی اندک است نیاز به محدودیت مصرف ندارد (33).
کارادد و همکاران (2004) توزیع برخی فلزات سنگین در سه‌اندام مختلف ماهی کفال و گربه ماهی لیزا آبو7 و سیلوروس تریوستگوس8در سد دریاچه آتاتور‌ک واقع در فرات ترکیه را مورد بررسی قرار دادند. تجمع فلزی در کبد و آبشش ماهیان در مقایسه با مقدار فلزات در عضلات کاملاً بیشتر بوده است .
غلظت فلزات کبالت، مس، آهن، منگنز، نیکل و روی که در عضلات ماهی مشخص گردیده کمتر از محدوده‌های مجاز اعلام شده از سوی سازمان خار و بار جهانی می‌باشد (27).
در تحقیقی که توسط آندرژی و همکاران (2006) انجام شد، ماهی‌ها از دو مزرعه در جنوب غربی اسلکواکی انتخاب شدند و هدف از این مطالعه تشخیص و ارتباط بین غلظت فلزات سنگین انتخابی و میزان بار میکروبی(شمارش باکتری‌های کل - باکتری‌های اسپورزای بی هوازی مزوفیلیک ) در عضلات ماهی کپور معمولی بوده است .
غلظت فلزات انتخابی با اسپکتروفتومتری جذب اتمی مدل " Pye unicam spq" اندازه گیری شد. غلظت فلزات برحسب میلی گرم بر کیلو گرم بر پایه وزن خالص برابر با:
آهن 15/15-47/3 ، منگنز 42/0-14/0 ، روی 52/9- 47/3 ، مس 32/1- 24/0 ، کبالت 17/0- 05/0 ، نیکل 42/0 – 07/0 ، کروم 19/0- 08/0 ، سرب 30/0 -11/0 و کادمیوم 05/0 – 01/0 گردیدند.
شمارش باکتریایی بی هوازی مزوفیلیک و باکتریهای کل بر حسب واحد تشکیل کلنی در گرم به ترتیب برابر با 3 10 76/7- 12/1 و6 10 59/7- 03/0 بوده است. اختلاف معنی داری در سطح P<0.05 برای تجمع زیستی کروم ، نیکل و مس و شمارش بار میکروبی باکتریهای بی هوازی مزوفیلیک در مزرعه‌ها ثبت شده است. همبستگی مثبت بین شمارش باکتریهای بی هوازی مزوفیلیک و تجمع فلزات سنگین به جز نیکل و همبستگی منفی بین شمارش باکتری‌های کل و تجمع فلزات سنگین به جز کروم ثبت شده است. غلظت سرب از حداکثر میزان مجاز در قوانین تغذیه‌ای اسلکواکی (2/0 میلی گرم بر کیلو گرم) %60 در استخر A و %40 در استخر B و میزان شمارش باکتریهای بی هوازی مزوفیلیک از حداکثر میزان آن در %100 دو استخر تجاوز کرده است و به طور متوسط ترتیب میزان فلزات در عضلات ماهی به این صورت بوده است (15).
استخر A : آهن < روی < مس< منگنز< سرب< کروم< نیکل< کبالت< کادمیوم
استخر B: آهن <روی< مس< منگنز< سرب< نیکل < کروم< کبالت< کادمیوم
طی بررسی انجام گرفته توسط فلم و همکاران(2005) فلس ماهی آزاد اقیانوس اطلس در مرحله قبل از اسمولت از چهار جمعیت وحشی و پرورشی با استفاده از LA-H-ICP-MS مورد آنالیز قرار گرفت هدف از این تحقیق بدست آوردن اختلافات بین ترکیبات عناصر ماهی آزاد که در آب‌های شیرین ، تا مرحله اسمولتیفیکاسیون زندگی کرده‌اند و به طور طبیعی رهاسازی یا به قفس‌هایی روی دریا انتقال داده شده‌اند می‌باشد. این جمعیت تحت آزمایش در واقع از انواع گونه‌های واقع در بخش برمنگر و سورفولد و یک گونه پرورشی از مسا و یک گونه محلی وحشی از رودخانه گولا بوده اند. عناصری که مورد آنالیز قرار گرفت شامل(لیتیم ، منیزیم ،کلسیم ، کرم ، منگنز، آهن، روی ، باریوم و سرب ) بوده است، کلسیم نیز به عنوان استاندارد داخلی طبیعی مورد استفاده قرار گرفت.
با اندازه‌گیری این ده عنصر توانایی تشخیص یک نوع جمعیت از بین جمعیتهای مختلف( گولا، مسا، سورفلد و برمنگر) بدست آمد .
اختلافات در ترکیبات عناصر فلس‌ها که امکان تشخیص چهار خانواده را فراهم می‌کند احتمالاً در اثر تنوع بستر سنگ‌ها در محل چهار نوع آب شیرین است که ماهی آزاد در طول دوره قبل از اسمولت در آن بوده است (23).
اندرسون و همکاران (2004) بر روی انتقال فلزات سنگین از رسوبات به ماهی قزل آلای رنگین کمان و همچنین ترشحات صفرای آنها مطالعه نموده و از میان هفت فلز سنگین روی، سرب، نیکل، جیوه، مس، کروم و کادمیوم تنها سه مورد جیوه، سرب و مس در صفرا متمرکز شده و نسبت صفرا به پلاسما بزرگتر از 1 بوده است.
برای تعیین سمیت صفرای پلاسمای خون ماهی قزل‌آلا از سنجش‌حیاتی سخت‌پوست دافنی استفاده شد، آنالیز واریانس نشان داد که سمیت صفرا و پلاسمای خون با استفاده از دافنی در مــاهیان قــزل آلایی کــه در معرض فلزات سنــگین قـرار گرفته بودند رابطه معنی داری با موارد زیر دارند(13).
1- غلظت پلاسما و صفرای مورد آزمایش
2- استفاده ازاسید در صفرا و پلاسما (هیدرولیز پلاسما و فلز وکمپلکس صفرا- فلز)
3- تراکم فلزات سنگین در رسوبات طی قرار گرفتن ماهی در معرض آن.

 

طی تحقیقات انجام شده توسط کوئلو و همکاران (2004) بر روی ماهیان انگشت قد آب شیرین ماهی باس دهان گشاد نسبت به ماهی خورشیدی سبز و ماهی طلایی در برابر با 250 میلی‌گرم در لیتر سوسپانسیون سرب یا محلول نیترات سرب تحمل بیشتری را داشته است. هنگامی‌که موکوس تهیه شده از ماهی باس دهان گشاد به ظرف حاوی سرب افزوده شد مقدار دوز کشنده 50% در ماهی خورشیدی سبز و ماهی طلایی افزایش یافت. اضافه کردن فلس‌ها به ویژه اگر فلس‌ها با محلول قلیایی سیستین و گلایسین تیمار شده باشند همه این گونه‌ها را در مقابل دیگر غلظت‌های کشنده سرب و یا جیوه مقاوم می‌‌نماید. فلس‌ها PH محلول نیترات سرب را با فره کرده و سرب و جیوه را(پس از کمپلکس کردن سرب) ته‌نشین می‌کنند. فلس‌های مربوط به ماهیان جوان‌تر گونه ماهی باس دهان گشاد در مقایسه با فلس‌های مربوط به انواع پیرتر کارآیی بیشتری در شلاته کردن فلزات سنگین داشتند(19).
در مطالعه‌ای که توسط زلیکوف و همکاران (1993) بر روی تأثیر آلوده کننده‌های فلزی بر پاسخ‌های ایمنی ماهی‌ها در شرایط آزمایشگاه و بدن موجود زنده انجام گرفت، بنا به دلایل زیر فلزات سنگین به عنوان آلوده کننده برای این بررسی در نظر گرفته شد:
1- فراوانی آنها در آب آلوده .
2- احتمال بالقوه ایمنوتوکسیک در دستگاههای بدن پستانداران.
3- قدرت ایجاد تومور در جوندگانی که در معرض آنها قرار گرفته‌اند.
4- سمیت کلی آن برای انواع گونه‌ها.
لذا برخی از فلزات سنگین از جمله کادمیوم، کروم، مس، سرب، منگنز و نیکل و روی برای بدن پستانداران ایمنوتوکسیک هستند به علاوه اعمال تنظیم ایمنی را در انواعی از گونه‌های ماهیان تغییر می‌دهند که این تغییرات می‌تواند سرانجام به افزایش مستعد شدن میزبان نسبت به عفونت‌ها و بیماری‌های خوش‌خیم در ماهیانی که در آبهای آلوده به فلزات سنگین ساکن شوند منجر گردد(36).
در مطالعه‌ای که توسط پیتر و همکاران (1987) انجام گردید مشخص شد که در خلال سنجش کیفیت آب، تاثیرات متقابل و سرنوشت فلزات سنگین در نظر گرفته نمی‌شود به عنوان مثال:
1- متیلاسیون جیوه توسط باکتریهای رسوبات، چربی دوستی(لیپوفیلی) آن را افزایش داده و موجب انباشته شدن آن توسط ماهی‌ها می‌شود.
2- بی مهرگان قسمت‌های عمیق اقیانوس با جذب سطوح معمولی سلنیوم آب می‌توانند برای ماهیانی که از موجودات ته اقیانوس تغذیه می‌کنند کشنده باشد.
3- اتصال پروتئین‌ها به فلزات سنگین که با در معرض قرار گرفتن فلزات روی می‌دهد، می‌تواند موجب افزایش تحمل ماهی‌ها نسبت به فلزات سنگین شود و متابولیسم طبیعی آنها را در رابطه با مواد مغذی مانند روی تغییر دهد در نتیجه: میزان آلودگی با فلزات مستلزم شناخت بیشتر درباره چگونگی جذب و متابولیسم فلزات در ماهی و ایجاد معیارهایی در رابطه با میزان بار فلزی و غلظت آنها می‌باشد(30).
دمیراک و همکاران (2005) غلظت فلزات سنگین کادمیوم، کروم، مس، سرب و روی در آب و رسوبات کف و بافت‌های عضلات و آبشش ماهی لئوسیسکوس سفالوس مربوط به رود دیپسیز2 در حوضه یاتاگان(جنوب غربی ترکیه) که محل یک نیروگاه حرارتی می‌باشد را اندازه گیری نمودند غلظت کادمیوم، سرب، روی و کروم در آبشش‌ها بیش از عضلات و سطح مس در عضلات بالاتر از آبشش‌ها بوده است، از طرف دیگر ارتباطی بین غلظت فلز در آب و رسوبات با عضلات و آبشش ماهی‌ها پیدا نشد و فقط یک رابطه مثبت بین غلظت مس و روی در رسوبات و بافت ماهی مشاهده شد نتایج نشان می‌دهد که آلودگی حاصل از نیروگاههای حرارتی ممکن است منبعی از این عناصر باشد(22).
در مطالعه‌ای که توسط سلدا و همکاران (2005) بر روی غلظت فلزات سنگین مس، آهن، روی، منگنز، کروم، سرب و کادمیوم در بعضی از اندام‌های ماهی لای ماهی و بافت‌های انگل آن در دریاچه کوادا ترکیه با استفاده از اسپکتروفتومتری جذب اتمی ‌انجام شد از بین فلزات فوق چهار فلز مس، آهن، روی و منگنز همزمان در آب، رسوبات و پلروسرکوئیدهای انگل لیگولا اینتستینالیس2 و نمونه‌های ماهی مشاهده شد. این عناصر دارای غلظت بیشتری در پلروسرکوئیدها نسبت به بافت‌های مختلف ماهی(عضلات، کبد، آبشش) بوده‌اند و غلظتی معادل 4/37-6/1 برابر میزان اندازه‌گیری شده در عضلات کبد و آبشش را داشته‌اند.
مشخص شد که سستودها جهت تعیین میزان فلزات سنگین در رسوبات مناسبند و اطلاعات موثق تری را درباره آلودگی واقعی منابع آب فراهم می‌کنند(31).

 

- لالشاه و همکاران (2005) نیز بر روی میزان تجمع فلزات سنگین کادمیوم، سرب و جیوه و میزان h96/50Lc در بدن ماهیان مطالعه انجام دادند بطوریکه غلظت جیوه، کادمیوم و سرب به ترتیب برابر با 011/0 ،32/0 و59/1 میلی‌گرم درگرم و میزان h96/50Lc آنها به ترتیب برابر با 1 و5/6 و300 قسمت در میلیون (ppm ) بوده است . تجمع عمومی فلزات سنگین در h96/50Lc به صورت سرب <کادمیوم< جیوه، بوده است. ماهیانی که غلظت بدنی کمتری از فلزات سنگین را دارا می باشند میزان h96/50Lc مربوط به فلزات سنگین در آنها کمتر است(28).
- در تحقیقی که آلام و همکاران(2000) بر روی کپور ماهیان وحشی موجود در رودخانه کاسومیگورای ژاپن انجام دادند مشخص شد که میزان غلظت فلزات سنگین در بدن این ماهیان از حد استاندارد تجاوز نمی کند(10) .

 

- در محیطهای اطراف آبزیان، فلزات سنگین به شکل محلول توسط ارگانیسم های آبزی جذب شده و از طریق باندهای سولفیدریل پروتئینی در بافتهای آنها تجمع می‌یابد(21).

 

2-3-3- مقادیر استاندارد پیشنهاد شده آهن و سرب از سوی سازمانها ومحققان مختلف :

 

- حداکثر میزان سرب در عضلات ماهی که توسط سازمان خوار و بار جهانی (FAO)پیشنهاد شده 5/0 میلی‌گرم در کیلوگرم است(26).

 

- حداکثر میزان آهن در عضلات ماهی که در جدول ترکیبات مواد غذایی انستیتو تحقیقات تغذیه‌ای و صنایع غذایی کشور(1379) پیشنهادشده 8 میلی‌گرم در کیلو‌گرم می‌باشد.

- حداکثر میزان آهن در آب مورد استفاده قزل آلای رنگین کمان که توسط هولیمان (1993) پیشنهاد شده 100 میکرو‌گرم بر لیتر است(25) .

 

- حداکثر میزان آهن در آب مورد استفاده آزاد ماهیان که توسط اسوبودووا و همکاران(1993) پیشنهاد شده 1/0 میلی‌گرم بر لیتر است (35).

 

- حداکثر میزان سرب در آب مورد استفاده قزل آلای رنگین کمان که توسط اسوبودووا و همکاران(1993) پیشنهاد شده30 میکرو‌گرم بر لیتر است(35) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1 - مواد و لوازم مورد نیاز :

 

1- ظروف یک لیتری پلاستیکی جهت جمع‌آوری نمونه‌های آب .
2- نایلون جهت جمع‌آوری نمونه‌های غذا .
3- نایلون جهت جمع‌آوری نمونه‌های ماهی .
4- جعبه یونولیتی جهت سرد نگه داشتن نمونه‌های ماهی .
5- قطعات یخ جهت سرد نگه داشتن نمونه‌های ماهی .
6- برچسب برای یادداشت مشخصات هر نمونه .
7- دستکش یک‌بار مصرف جهت نمونه‌برداری از غذا و ماهی.

 

3-2- روش کار :

 

در ابتدا طی تحقیقات انجام شده مزارعی که از غذاهای مورد نظر جهت تغذیه ماهیان استفاده می‌کردند مشخص شده و نشانی آنها یادداشت گردید .
سپس جهت نمونه برداری به این مزارع مراجعه شد و در ضمن مراجعه ، در مورد سیستم پرورش ماهیان قزل‌‌آلا و نوع استخرهای پرورشی جهت یکدست بودن سیستم پرورشی مزارع انتخابی اطلاعات مورد نیاز از مسؤولین بدست آمد و در مجموع از چهار نوع خوراک مصرفی مورد نظر در سایز GFT ٬ آب ورودی مزارع منتخب و ماهیان سایز 200 گرمی نمونه‌برداری صورت گرفته و به آزمایشگاه ارجاع شد .

 

1- نمونه‌برداری از ‌آب : ظروف شیشه‌ای مربوط به نمونه‌برداری از آب ابتدا بوسیله اسید کلریدریک و سپس آب مقطر شستشو داده شد تا PH ظروف خنثی بماند (2). سپس از قسمت ورودی آب مزارع نمونه‌برداری صورت گرفته و مشخصات نمونه از قبیل نام و مشخصات مزرعه ٬ تاریخ نمونه‌برداری و نام مسؤول مزرعه روی نمونه یادداشت گردید . دمای آب ورودی اندازه‌گیری شده و با نگه‌داری ظروف در مجاورت یخ در جعبه یونالیتی دمای آب تا رسیدن به آزمایشگاه در همان دما نگه‌داری گردید .

 

2- نمونه‌برداری از غذا : پس از ورود به انبار از کیسه‌های غذا در سایز GFT بوسیله دستکش یک‌بار مصرف و از هر کیسه به مقدار مساوی از اعماق مختلف برداشت شده و در نایلون ریخته شد و با تکان دادن مخلوط گردید . دلیل این‌کار جلوگیری از بروز خطا ناشی از مشکل‌دار بودن احتمالی یکی از کیسه‌ها بود . سپس مشخصات نمونه روی آن یادداشت گردید .

 

3- نمونه‌برداری از ماهی : ماهیان انتخابی همگی از نظر سلامت ظاهری مشاهده شده سپس با اخذ تاریخچه غذایی ماهیان ٬ از مزارعی که در طول مدت رشد ماهی از چند نوع غذا استفاده کرده بودند نمونه‌برداری صورت نگرفت و فقط ماهیانی جمع‌آوری شدند که از ابتدا تا رسیدن به این وزن از یک نوع غذا تغذیه شده بودند .از هر مزرعه جهت اطمینان دو عدد ماهی مورد بررسی قرار گرفت . سپس ماهیان درون نایلون گذاشته شده و در مجاورت یخ به آزمایشگاه حمل شدند .
نمونه‌ها ظرف مدت 2-1 ساعت به آزمایشگاه منتقل گردیده و فرآیندهای زیر روی آنان صورت گرفت :

 

1) اقدامات انجام گرفته بر روی نمونه‌های آب :
بعد از انتقال ظروف به آزمایشگاه ، اسید سولفوریک به این ظروف افزوده شد که PH آب زیر 2 قرار گیرد تا در میزان فلزات سنگین تغییری حاصل نشود .

 

2) اقدامات انجام گرفته بر روی نمونه‌های خوراک :
نمونه مورد نظر را در اسید نیتریک همراه با اسید کلریدریک هضم می‌کنیم و با جذب اتمی شعله‌ای قرائت می‌کنیم . عناصری مانند آهن که مقدار آن در غذای ماهی زیاد می‌باشد، باید ابتدا رقیق شده و سپس قرائت شود .

 

3) اقدامات انجام گرفته بر روی نمونه‌های ماهی :
نمونه عضله ماهی را با اسید نیتریک هضم می‌کنیم و با جذب اتمی شعله‌ای عناصر مورد نظر را قرائت می‌کنیم . مقدار عناصر در عضله و خوراک ماهی به حدی است که با شعله قابل قرائت می‌باشد و نیازی به کوره گرافیتی نیست ولی در مورد آب مقدار عناصر در حد قسمت در بیلیون (ppb) است که باید با کوره قرائت شود .
(لازم به ذکر است که دستگاه جذب اتمی مورد استفاده، مدل یونیکم 939 می‌باشد که محصول مشترک آلمان و انگلستان است )

 

 

 


3-2-1- تاریخچه دستگاه جذب اتمی:
روش جذب اتمی در اواسط سال 1950 توسط آلن والش معرفی شد گرچه اصول اساسی طیف جذب اتمی در سالهای قبل از سال 1860 ، بنا نهاده شده بود.
به طور کلی جذب اتمی اسپکتروفتومتری در مفهوم تجزیه ای بعنوان روشی برای تعیین مقدار غلظت یک عنصر در نمونه با اندازه گیری مقدار جذب تشعشعات در بخار اتمی تولید شده از نمونه در طول موجی که مشخص و خاص عنصر تحت اندازه گیری می باشد توصیف می شود.
بطوریکه ثابت کرده اند جذب اتمی اسپکتروسکپی دقیق ترین وسیله فنی برای تخمین و تعیین مقدار فلزات در محلولها می باشد کارائی این وسیله به تنهایی توسط این حقیقت که بین 60 تا 70 عنصر فلزی را با آن در غلظتهائی از حدود جزئی تا مقادیر نسبتاً زیاد میتوان تعیین مقدار نمود روشن می شود. این وسیله محدود به محلولهای آبی نمی شود زیرا حلالهای آلی و مخلوط حلالهایی آلی و آبی نیز مناسب هستند و در بسیاری حالتها برای تعیین مقدار با صرفه تر می باشند. در این روش تصفیه شیمیایی نمونه بندرت مورد نیاز می باشد بطوریکه اندازه گیری غلظت انواع فلزات با اتمیک ابسورپشن به سرعت و آسانی انجام می شود. اصول علمی جذب اتمی بشرح زیر است:
اگر یک محلول شامل ترکیبات فلزی به داخل شعله مانند هوا – استیلن تزریق شود بخار اتمی از فلز تشکیل خواهد شد طریقه انتشار نور بدین ترتیب است که در لامپ مخصوص بعضی از اتمهای فلز به یک سطح انرژی بالا رسیده ئ تشعشعات مخصوص آن فلز را انتشار می دهند پس از تزریق نمونه به دستگاه و تبدیل شدن یونهای فلزی به اتم، اتمها قادر خواهند بود نور منتشر شده از منبع نور را که از میان شعله حاوی اتمهای عنصر عبور می نماید جذب نمایند در حالیکه میزان جذب متناسب با تراکم اتمها در شعله می باشد.
این روش اصولاً خاص یک عنصر به خصوصی است که اندازه گیری می شود زیرا اتمهای یک عنصر بخصوص فقط می تواند تشعشعات طول موج مشخص خودشان را جذب نمایند به بیان دیگر نور یک فرکانس مشخص فقط می تواند به وسیله عنصر بخصوصی که مشخص است جذب شود بنابراین تداخلات طیفی که در روشهای انتشار مزاحم می باشند ندرتاً اتفاق می افتد(2).

 

3-2-2- قسمتهای مختلف دستگاه جذب اتمی :

 

1- یک منبع نورانی پایدار که رزونانس خطی عنصری را که باید تعیین مقدار شود انتشار میدهد منبع نور معمولاً لامپی کاتدی و تو خالی می باشد که کاتد آن از جنس عنصری که باید تعیین مقدار شود ساخته شده است داخل لامپ از گاز بی اثر آرگون یا نئون در فشار کم پر شده است. انتشار نور از این لامپ طوری تنظیم یافته که منحصراً تشعشعات آن، نه تشعشعات منتشر شده از شعله در گالوانومتر مشخص نشان می شود.
2- سیستم شعله که نمونه محلول با سرعت یکنواخت به داخل آن تزریق میشود و درجه حرارت به اندازه کافی است تا بخار اتمی انواع مورد نیاز از ترکیبات موجود در محلول را بتواند تولید نماید. عمومی ترین شعله مورد استفاده سیستم هوا – استیلن می باشد.
3- یک مونوکروماتور که خطوط رزونانس مختلف را از هم جدا می کند و فقط نور یکنواخت عبور می دهد.
4- یک فتومولتی پلاتر (دستگاه تقویت کننده) که نور را تبدیل به انرژی نموده و شدت آنرا تقویت می کند.
قسمتهای مختلف دستگاه جذب اتمی که در بالا بیان گردید در شکل 3-1 نشان داده شده است.
از جمله مزایای جذب اتمی اسپکتروفتومتریکی این است که برای تعداد زیادی از عناصر کاملاً اختصاصی می باشد همچنین در این روش میزان جذب بستگی به مقدار اتمهای آزاد تحریک نشده در شعله دارد که این دسته از اتمها به مقدار فراوان تری از اتمهای تحریک شده وجود دارند بنابراین عناصری نظیر روی و منیزیم که به آسانی تحریک نمی شوند و نتایج خوبی با روش نورسنجی با شعله نمی دهند به آسانی با متد جذب اتمی اندازه گیری می شوند مزیت دیگر ان در این است که با نصب کربن رودا تمایزر میتوان غلظت بسیاری از فلزات در حدود میکروگرم در لیتر را تعیین مقدار نمود در موقع اندازه گیری با سیستم C.R.A سیستم شعله با یک لوله استوانه ای شکل کوچک از گرافیت تعویض می شود(2).

 

 

 

3-2-2-1 روش کار با دستگاه جذب اتمی با شعله:
ابتدا دستگاه اندازه گیری باید تنظیم شود و صفر آن با تزریق آب مقطر به داخل شعله مشخص گردد. پس از روشن شدن لامپ نور بدون مانع از لامپ کاتدی انتشار می یابد و بر روی تقویت کننده می افتد و وقتی محلولی حاوی یونهای قابل جذب به داخل دستگاه تزریق می شود قسمتی از نور منتشره از لامپ کاتدی جذب خواهد شد در نتیجه شدت نور روی دستگاه تقویت کننده کاهش می یابد.
محلولهای استاندارد عنصری که باید تعیین مقدار شود برای رسم منحنی کالیبراسیون به کار می روند تا از روی آنها بتوان غلظت عناصر در نمونه های مورد آزمایش را با توجه به میزان جذب نور آنها به دست آورد.
به علت اختلاف بین مدلها و ساخت دستگاه اتمیک ابسورپشن توسط کارخانجات سازنده آموزش یک متد فرموله شده قابل قبول برای طرز کار با هر وسیله امکان پذیر نمی باشد ولی بطور کلی طرز عمل به ترتیب زیر می باشد:
1- لامپ کاتدی فلزی را که می خواهیم تعیین مقدار نماییم در دستگاه نصب کرده و طول موج آنرا تنظیم می کنیم.
2- عرض شکاف (دیافراگم) را بر طبق کارخانه سازنده دستگاه برای عنصری که اندازه گیری می شود تنظیم می نمائیم.
3- دستگاه را روشن و مقدار جریان قراردادی بوسیله کارخانه تولید کننده را برای لامپ کاتدی به کار می بریم.
4- فرصت می دهیم که دستگاه گرم شده منبع انرژی ثابت شده. این مرحله معمولاً 10 تا 20 دقیقه زمان نیاز دارد بعد از گرم شدن دستگاه در صورت نیاز مجدداً جریان را تنظیم می کنیم.
5- شعله پخش کن را نصب می نمائیم(2).

 

دانلود با لینک مستقیم


دانلود مقاله فلزات سنگین

مقاله فلزات

اختصاصی از نیک فایل مقاله فلزات دانلود با لینک مستقیم و پر سرعت .

مقاله فلزات


مقاله فلزات

از زمانی که روی به عنوان یکی از عناصر گروه فلزات متداول قلمداد گردیده دارای اجتماعی از خواص عدیده می باشد که آن را دقیقاً از سایر عناصر متمایز ساخته است. روی دارای تقطه جوش نسبتاً پایین بوده (سانتیگراد) بنابراین تا زمانی که دماهای افزون بر این قرار داریم اکسید آن توسط کربن احیاء نمی‌گردد.

این فلز به صورت بخار تولید می‌شود و روشهای ذوبی که ابتداً تا تاریخ متالورژیکی بشر برای تولید مس ، آ هن سرب قلع گسترش یافته بود را نمی‌توان وی بکار برد،. برای تولید آن بشر مجبور به تأمل تا زمان توسعه قرع جهت تبخیر روی و تقطیر جداگانه بوده است.

به عنوان پی آمد این عمل تا دیر زمانی بعد از سایر فلزات روی فلزی تولید نمی‌شود اما سرانجام ناگهان راه‌حلهایی برای این مسأله یافت شد در نتیجه حداقل پنج روش تولید اساساً متفاوت توسعه یافت که دارای کاربردهای تجارتی گسترده‌ای بودند روی (zn)غیر آلیاژی چنانچه از نقطه ذوبش (سانتیگراد) انتظار می رود تنها خواص مکانیکی متوسطی داشته و نتیجتاً کاربردش در مهندسی محدود می‌گردد. به هر حال بنحوه گسترده ای در آلیاژ بکار می رود بعنوان مثال با آلومینیم تا 4% سلسله آلیاژهای عالی ریخته گری تحت فشار را تشکیل داده تادر بسیاری زمینه‌های در کاربرهای تحت تنش های کم بکار می‌روند. افزایش حداکثر 45% روی به مس سلسله آلیاژهای مهم ودیر آشنای برنج را تشکیل می‌دهد که مشابه عمده سهم آن در تولید مواد مهندسی

باشد.

مقاومت روی در مقابل تنشهای ممتد زیاد نبوده و فلز مستعد به خزش می‌باشد اما اخیراً آلیاژهای با مقادیر کم مس و تیتانیم تولید شده‌اند که در مقابل خزش بسیار مقاومتر می باشند. شاید مهمترین کاربرد صنعتی روی از خواص شیمیایی‌اش سر چشمه می‌گیرد. مقاومتش به خوردگی اتمسفری بالا بوده و می‌توان پوششهای چسبنده‌ای از آن که دارای مقاومت خوردگی چند برابر فولاد پایه دارد را بر روی آهن تولید نمود. از آنجا که روی نسبت به آهن الکترونگاتیویه است تمایل دارد تا ترجیحاً خورده شود. علاوه بر آن سطح فولاد را محافظت می نماید. کاربرد روی در صنایع به طور یکنواختی رو به فزونی بوده و شکی نیست طی سالهای آتی به مقدارزیادی مورد استفاده قرار خواهد گرفت.

همانند سایر مواد خام ذخائر قابل استفاده‌اش در پوسته زمینی محدود می‌باشد. تا آنجا که می‌توانیم معادن مرتبط با روی نسبت به سایر فلزات متداول، موقعیت بهتری را دارا می بابشد به هر حال اگر تقاضا با آهنگ فعلی ادامه یابد قابلیت استفاده از مقادیر کافی کنسانتراتهای پر عیار که اکنون عمدتاً بنای این صنعت بر آن قرار دارد مورد تهدید قرار خواهند گرفت. بهبود روشهای استخراجی برای مقادیر گسترده منابع کم عیاری که در حال حاضر نمی‌توانم بنحو اقتصادی از آنها استفاده نمود ضروری می‌باشد. آخرین کیلومتر بیرونی توده زمین بنمایی شامل 521 میلیون تن روی می‌باشد .

با توجه به قیمتها و روشهای موجود در معادن چنانچه کانه روی بیش از 3 درصد فلز

روی(zn) داشته باشد استخراج قابل صرف است. بجز اینکه در مواردی که سایر فلزات نظیر سرب، مس، یا نقره در ترکیب کانه موجود باشد و بتوان آنها را بطور همزمان بازیابی نمود.

تولید روی بسیار دیرتر از تولید سایر فلزات رایج واقع گردید در حالیکه احتمالاً مس (cu)در حدود 5000 سال قبل از میلاد مسیح از کانه هایش ذوب می گردید، سرب (pb)حدود 4000 سال قبل از میلاد مسیح و آهن حدود 2000 سال قبل از میلاد مسیح تولید می‌شدند. به نظر می رسند تا قرن چهاردهم میلادی در یک سطح تجاری مورد استفاده قرار گرفته باشد. مطمئناًروی به عنوان یک فلز قبل از زمان شناخته شده بود . برنج یک آلیاژی از روی و مس، توسط رومی‌ها 200 سال قبل از میلاد مسیح تولید می‌شد اما روش مورد استفادها آنها شامل حرارت دادن اکسید روی و کربن در بوته های مسی بود. روی تشکیل شده توسط احیاء فوراً در مس جذب می‌گردید و به صورت فازی جداگانه تولید نمی‌شد.

اتفاقاً مقادیر کمی روی فلزی(zn) از گازهای خروجی کوره‌ای ذوب سرب بازیابی می‌گردید. اکثر کانه های سرب حاوی روی می‌باشد در حین ذوب قسمتی از اکسید روی موجود احیاء گردیده و بخار روی را تشکیل می‌دهد در حالیکه اکثر این ماده فوراً در سطوح بالاتر کوره اکسید می‌گردد.

تولید این روش تنها مقادیر بسیار نا چیزی جمع‌آوری گردیده است. آنقدر کم که هیچ کاربرد اقتصادی نداشته اما برای نمایش وجود فلز تعیین مشخصاتش کافی می‌بود و احتمالاً برای تولید معدودی که باستان‌شناسان قدمت تاریخ شان را به قبل از میلاد مسیخ نسبت داده اند بکار می‌رفته‌اند.

 

 

 

 

 

 

این مقاله به صورت  ورد (docx ) می باشد و تعداد صفحات آن 136صفحه  آماده پرینت می باشد

چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد

مقالات را با ورژن  office2010  به بالا بازکنید


دانلود با لینک مستقیم


مقاله فلزات

تحقیق تخریب فلزات با عوامل غیر خوردگی

اختصاصی از نیک فایل تحقیق تخریب فلزات با عوامل غیر خوردگی دانلود با لینک مستقیم و پر سرعت .

تحقیق تخریب فلزات با عوامل غیر خوردگی


تحقیق تخریب فلزات با عوامل غیر خوردگی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:13

فهرست:

تخریب فلزات با عوامل غیر خوردگی

فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب می‌‌شوند که تحت عنوان خوردگی مورد نظر ما نیست.

فرایند خودبه‌خودی و فرایند غیرخودبه‌خودی

خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد. البته M+n می‌‌تواند به حالتهای مختلف گونه‌های فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ می‌‌زند که یک نوع خوردگی و پدیده‌ای خودبه‌خودی است. انواع مواد هیدروکسیدی و اکسیدی نیز می‌‌توانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیده‌ای خودبه‌خودی است، اشکال مختلف آن ظاهر می‌‌شود .                                                .

بندرت می‌‌توان فلز را بصورت فلزی و عنصری در محیط پیدا کرد و اغلب بصورت ترکیب در کانی‌ها و بصورت کلریدها و سولفیدها و غیره یافت می‌‌شوند و ما آنها را بازیابی می‌‌کنیم. به عبارت دیگر ، با استفاده ‌از روشهای مختلف ، فلزات را از آن ترکیبات خارج می‌‌کنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج می‌‌کنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به ‌اکسید آلومینیوم می‌‌کنند و سپس با روشهای الکترولیز می‌‌توانند آن را احیا کنند.


دانلود با لینک مستقیم


تحقیق تخریب فلزات با عوامل غیر خوردگی