نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله درباره مشتق 15 ص

اختصاصی از نیک فایل مقاله درباره مشتق 15 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

مقدمه

 

 

شیب خط مماس در روش لایپ نیتز (خط )

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

f'(x)

f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

تاریخچه

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

مشتقات مراتب بالاتر

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

f'' و f''' و f''''

f(2) و f(3) و f(4)

تابع مشتق‌پذیر در یک نقطه

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

تابع مشتق‌پذیر

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

شرایط مشتق‌پذیری

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.

مشتق گیری و مشتق پذیری :

در گذشته های نه چندان دور، مشتق یک تابع را به صورت زیر نشان می دادند: که در این فرمولنشان دهنده میزان تغییرات یک کمیت است. ولی در حال حاضر برای محاسبه مشتق توابع،بیشتر از فرمول زیر استفاده میکنند: معمولا از نمادهای زیر برای نشان دادن مشتق تابع f نسبت به متغیر x، استفاده میکنند:

 

 

 

یک تابع را در نقطه ای مانند x مشتق پذیر گویند اگردر آن نقطه مشتق موجود باشد. و برای مشتق پذیری تابع در یک بازه لازم است تابع در هر نقطه دلخواه از


دانلود با لینک مستقیم


مقاله درباره مشتق 15 ص

مقاله درمورد مبحث مشتق اصول فقه 1‏

اختصاصی از نیک فایل مقاله درمورد مبحث مشتق اصول فقه 1‏ دانلود با لینک مستقیم و پر سرعت .

مقاله درمورد مبحث مشتق اصول فقه 1‏


مقاله درمورد مبحث مشتق اصول فقه 1‏

دسته بندی : فقه _ فلسفه و منطق ،

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

تعداد صفحات : 100 صفحه

فهرست مطالب .
عنوان صفحه امر سیزدهم از مقدمات بحث اصول ـ مشتق 1 امر اول – معنای مشتق 2 امر دوم – جریان نزاع در اسم زمان 8 امر سوم – تفاوت مشتق ادبی با اصولی 10 امر چهارم – تفاوت در مبادی مشتق 19 امر پنجم – حال نطق یعنی چه ؟
21 امر ششم – مشتق حقیقت در متلبس است یا اعم 25 امر اول – مشتق بسیط است یا مرکب 51 امر دوم – تفاوت میان مشتق و مبدأ مشتق 73 امر سوم – ملاک صحت حمل در قضایای حملیه 76 امر چهارم – تغایر بین ذات و مبادی صفات 78 امر پنجم – ارتباط و اضافه بین مبدأ و ذات 81 امر ششم – تلبس با واسطه یا بی واسطه 87 بسمه تعالی تحقیق درس اصول فقه 1 مبحث : مشتق امر سیزدهم : از مقدمات بحث اصول «مشتق» (1) – یکی از مباحث دقیق و مفصل، بحث مشتق است.

در بحث مذکور، یک جهت مورد اتفاق و یک جهت محل اختلاف هست اما مسأله مورد اتفاق: 1- الف : اگر ذاتی - زید- تلبـّس به مبدئی- ضرب- دارد مثلاً زید تلبـّس به مبدأ دارد و مشغول ضرب هست و ما به لحاظ حالی که اشتغال به زدن دارد، عنوان ضارب را بر او منطبق کرده و بگوئیم « زید ضارب» بلااشکال، استعمال آن مشتق، حقیقی است بنابراین : « لا خلاف فی کون المشتق حقیقه فی المتلبس بالمبدأ فی الحال» ب: چنانچه ذاتی - زید - در آینده می خواهد تلبس به مبدئی مانند ضرب پیدا کند ولی به لحاظ این که آن فرد اشتغال به ضرب، پیدا می کند، اکنون عنوان ضارب را بر او نمائیم و بگوئیم « زید ضارب» بلا اشکال، استعمال آن مشتق، مجازی است نه حقیقی.
مثال دیگر: چنانچه به فردی که در دانشکدة پزشکی تحصیل می کند و بنا هست که پنج سال دیگر، دکترای طب، اخذ کند، اکنون بر او عنوان دکتر و طبیب اطلاق نمائیم، مسلماً استعمال آن مشتق، مجازی است نه حقیقی بنابراین : « لاخلاف فی کون المشتق مجازاً فیما لم یتلبس بالمبدأ بعد» 2- اما مسأله مورد اختلاف و محل نزاع : اگر ذاتی- زید- سابقاً تلبس به مبدئی - ضرب- داشته ولی اما اکنون به لحاظ تلبس قبلی بخواهیم عنوان مشتق را بر او تطبیق نمائیم و بگوئیم « زید ضارب الیوم» این محل اختلاف و نزاع هست که آیا استعمال آن مشتق، مجازی است یا حقیقی لذا محل بحث ما این است که : آیا مشتق، حقیقت است در ما تلبس‌ بالمبدأ فی الحال یا اعم است از ما تلبس بالمبدأ فی الحال که شامل ما انقضی عنه المبدأ هم بشود.
قبل از ورود به بحث و بیان اقوال باید مقدماتی را بیان کنیم که اینک به توضیح آنا می پردازیم.
امر اول : معنای مشتق (1) – در ادبیات، مشتق را چنین تعریف کرده اند «بانه لفظ مأخوذ من لفظ آخر مع اشتماله علی حروفه و موافقته معه فی الترتیب او مطلقاً» بنابراین هر لفظی که مأخوذ از لفظ دیگری باشد، دارای عنوان مشتق هست مثلاً فعل ماضی، مشتق است زیرا از مصدر، اخذ شده فعل مضارع مشتق است چون از فعل ماضی، مأخوذ است و همچنین افعال امر و نهی هم مشتق هستند زیرا از فعل مضارع گرفته شده اند پس در ادبیات، عنوان مشتق، عام است.  متن بالا فقط تکه هایی از محتوی متن مقاله میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین ،فایل را فورا دانلود نمایید 

 

 


  لطفا به نکات زیر در هنگام خرید دانلود مقاله :  توجه فرمایید.

  • در این مطلب،محتوی متن اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در ورد وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید.
  • پس از پرداخت هزینه ،ارسال آنی مقاله یا تحقیق مورد نظر خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد.
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل متن میباشد ودر فایل اصلی این ورد،به هیچ وجه بهم ریختگی وجود ندارد.
  • در صورتی که محتوی متن ورد داری جدول و یا عکس باشند در متون ورد قرار نخواهند گرفت.
  • هدف اصلی فروشگاه ، کمک به سیستم آموزشی میباشد.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


مقاله درمورد مبحث مشتق اصول فقه 1‏

مشتق

اختصاصی از نیک فایل مشتق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

 

1- مقادیری از X را که تابع h به ازای آنها پیوسته است را بیابید ؟

Y یک تابع چندجمله ای است وبه ازای هرعددحقیقی پیوسته است وهمچنین f به ازای هرعددمثبت پیوسته است بنابه قضیه بالا برای هر x که بزرگترازصفرباشد پیوسته است .

پیوستگی روی یک بازی : تابع را روی فاصله (a,b ) پیوسته می نامند اگر به ازاء هر نقطه ازاین فاصله تابع پیوسته باشد .

تابع را درفاصله [a ,b] پیوسته می نامند . اگر درفاصله (a ,b) پیوسته ، اگر x در a ازراست ودر b ازچپ پیوسته باشد .

قضیه مقدارمیانی : اگرتابع در [a,b] پیوسته باشد واگر آنگاه به ازای هرعدد k بین و عددی مانند c بین a , b‌ وجوددارد به طوری که مساوی k است .

مثال : فرض کنید آیا این تابع شرایط مقدارمیانی را در فاصله [ 3 و 0 ] دارد ؟

چون تابع در نقطة x = 2‌ پیوسته نیست در نتیجه تابع در فاصله [3و0] پیوسته نمی باشد بنابراین شرایط قضیه مقدار میانی را ندارد .

قضیه افشردگی ( ساندویچ ) اگر ، و سه تابع باشند که :

 

آنگاه

مثال : با استفاده از قضیه افشردگی را بیابید ؟

 

مثال : ازانجایی که قدرمطلق درضمن چون سمت چپ وراست آن صفرمی شودپس مقداروسطی 1 نیز طبق اصل فشردگی صفر خواهد شد .

مشتق

تابع در مشتق پذیراست اگر حد زیر موجود باشد : a عدد حقیقی است و می نویسیم :

اگر درتعریف مشتق x-a=h درنتیجه : ( تعریف دیگر ) :

 

مشتق یک تابع درهرنقطه x :

 

مثال : رابااستفاده از معادله بدست آورید ؟

 

تعبیر هندسی مشتق :

ضریب زاویه خط مماس برمنحنی درنقطه x=a برابر است با مشتق به ازاء طول نقطه تماس

همان معادله

نکته : ضریب زاویه خط قائم برمنحنی درنقطه x=a برابراست با :

 

معادله خط قائم معادله خط مماس

مثال : منحنی را که موازی خط 6x+3y-4=0‌را پیداکنید ؟

 

ضریب زاویه خط مماس

 

معادله خط قائم

نمادگذاری مشتق : نمادهای مشتق عبارتند از :

قضایای مشتق :

اگر مشتق عددثابت صفراست .

 

اگر و مشتق پذیرباشند آنگاه :

 

اگرn یک عددطبیعی باشد :

قضیه : اگرتابع درنقطه x = a مشتق پذیرباشدآنگاه در x = a پیوسته است ولی عکس آن درست نیست .

 

مثال : فرض کنید b رابه گونه ای پیداکنیدکه تابع مشتق داشته باشد ؟

راست گوئیم تابع درنقطه a مشتق پذیراست اگرمشتق چپ وراست موجودوباهم مساوی باشند .

قاعده زنجیری مشتق : اگر f تابعی از u و u تابعی از x باشد :

 

مثال : فرض کنید باشد مشتق این عبارت رامحاسبه کنید ؟ نسبت به x

 

مشتق تابع ضمنی :تابعی است که می توان y را برحسب x ‌ و x رابرحسب y حساب کرد . درتوابع ضمنی همیشه باید تابع رامساوی صفرقراردهیم .


دانلود با لینک مستقیم


مشتق

دانلود تحقیق مشتق

اختصاصی از نیک فایل دانلود تحقیق مشتق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

مشتق

مشتق یا محاسبۀ دیفرانسیلی، بخش اول آنالیز ریاضی است که نرخ لحظه‌ای (یا نقطه‌ای) تغییرات تابع را نشان می‌دهد. این مفهوم در سال ۱۶۶۶ میلادی، نخستین بار توسط نیوتون و به فاصلۀ چند سال بعد از او، توسط لایب نیتس، مستقل از یکدیگر پدید آمد. این دو دانشمند در ادامۀ کار خود، باز هم به طور مستقل، بخش دوم آنالیز ریاضی یعنی محاسبۀ انتگرالی را عرضه کردند که اساس آن بر عمل انتگرال‌گیری قرار دارد.

نیوتون از شیوۀ استدلال سینماتیک و با دیدگاه فیزیکی به بررسی مشتق پرداخته و از آن برای بدست آوردن سرعت لحظه‌ای استفاده می‌کرد. اما لایب نیتس با دیگاهی هندسی، از مشتق برای بدست آوردن ضریب زاویۀ مماس در منحنی‌ها استفاده می‌کرد. هر یک از این دو دانشمند نمادهای جداگانه‌ای را برای نشان دادن مشتق به کار می‌بردند.

پیشرفت محاسبۀ دیفرانسیلی و انتگرالی در دوران بعد به برادران برنولی، یعنی یاکوب و یوهان، مربوط می‌شود. لوپیتال، دانشمند فرانسوی، در سال ۱۸۹۶ نخستین کتاب درسی مربوط به آنالیز ریاضی را با نام «آنالیز بی‌نهایت کوچک‌ها برای بررسی منحنی‌ها» منتشر کرد که در واقع خلاصه‌ای از درس‌هایی بود که یوهان برنولی به عنوان معلم برای او نوشته بود. در این کتاب درسی، قاعدۀ رفع ابهام در حد با استفاده از مشتق نیز آمده که امروزه به نام قاعدۀ هوپیتال مشهور است ولی در واقع، متعلق به یوهان برنولی بوده‌است

تعریف

برای تابع /که در همسایگی نقطۀ /تعریف شده‌است، اگر /وجود داشته باشد، /در /مشتق‌پذیر است. این حد یکتا را با /نمایش داده و آن را مشتق تابع /در نقطۀ /می‌نامند.

بر طبق این تعریف، مقدار مشتق برابر نرخ تغییرات مقدار تابع است زمانی که تغییرات مربوط به متغیر مستقل به سمت صفر میل می‌کند.

با تبدیل /به /تعریف دوم مشتق به صورت زیر حاصل می‌شود:

/

نمادهای مشتق

لایب نیتس، لاگرانژ، اویلر و نیوتون هر یک نماد جداگانه‌ای را برای نمایش مشتق بکار می‌بردند که در کل مشتق را می‌توان با نمادهای زیر نشان داد:

/یا /که نمایش دیفرانسیلی مشتق نامیده می‌شود، در سال ۱۶۷۵ میلادی توسط لایب نیتس وضع گردید و برای نمایش مشتق مراتب بالاتر به صورت /یا /نوشته می‌شود.

/یا /در سال ۱۷۷۴ میلادی توسط لاگرانژ مورد استفاده قرار گرفت. مشتق مراتب بالاتر با استفاده از این نماد به صورت /(مشتق اول)، /(مشتق دوم)، /(مشتق سوم)، /(مشتق چهارم) ... /(مشتق /ام) نشان داده می‌شود.

/یا /که اویلر در آن‌ها از عملگر دیفرانسیلی /استفاده کرده‌است و به صورت /مشتق مراتب بالاتر را نشان می‌دهد.

نیوتون برای نشان دادن مشتق اول از /و برای مشتق دوم از /استفاده می‌کرد.

مشتق‌های یک طرفه

مشتق راست: اگر تابع /در فاصلۀ /تعریف شده باشد آنگاه حاصل حد زیر، در صورت وجود، مشتق تابع در /می‌باشد:

/

مشتق چپ: اگر تابع /در فاصلۀ /تعریف شده باشد آنگاه حاصل حد، زیر در صورت وجود، مشتق تابع در /می‌باشد:

/

مشتق‌پذیری

تابع /در /مشتق‌پذیر است هرگاه در این نقطه پیوسته باشد و مشتق چپ و راست تابع با هم برابر و مساوی یک عدد حقیقی معین باشد.

تعبیر هندسی مشتق‌پذیری: تابع /در /مشتق‌پذیر است هرگاه بتوان در این نقطه یک خط کامل مماس و غیر موازی با محور yها بر منحنی رسم کرد.

اگر تابع /در نقطۀ /مشتق‌پذیر باشد، آنگاه در آن نقطه پیوسته نیز هست.

ولی عکس قضیۀ فوق صحیح نمی‌باشد یعنی ممکن است تابع پیوسته باشد اما مشتق‌پذیر نباشد؛ به عبارت دیگر، پیوستگی تابع در /شرط لازم برای مشتق‌پذیری تابع است، نه شرط کافی. پس اگر تابع /در /ناپیوسته باشد، آنگاه در /مشتق‌پذیر نیست.


دانلود با لینک مستقیم


دانلود تحقیق مشتق

تحقیق درمورد مشتق 15 ص

اختصاصی از نیک فایل تحقیق درمورد مشتق 15 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

مقدمه

 

 

شیب خط مماس در روش لایپ نیتز (خط )

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

f'(x)

f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

تاریخچه

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

مشتقات مراتب بالاتر

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

f'' و f''' و f''''

f(2) و f(3) و f(4)

تابع مشتق‌پذیر در یک نقطه

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

تابع مشتق‌پذیر

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

شرایط مشتق‌پذیری

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.


دانلود با لینک مستقیم


تحقیق درمورد مشتق 15 ص