پلی پروپیلن (PP) یکی از پرمصرف¬ترین مواد پلیمری جهان است که مصرف آن روز به روز افزایش می-یابد. میزان مصرف این پلیمر در سال 1970، 5/1 میلیون تن، در سال 1990 حدود 13 میلیون تن و در سال 1995، 19 میلیون تن بوده است و پیش بینی می شود که میزان مصرف این پلیمر در سال 2000 به حدود 25 میلیون تن برسد ]1[.
استفاده از کاتالیست¬های زیگلر – ناتا تنها فرآیندی است که برای تولید پروپیلن و کوپلیمرهای آن نظیر پروپیلن-اتیلن بکار می¬رود، زیرا پروپیلن را نمی¬توان با پلیمریزاسیون رادیکال آزاد تولید کرد. واکنش پلیمریزاسیون می¬تواند در چندین موضع فعال روی ذرات کاتالیست آغاز گردد و سرعت انجام واکنش در این مواضع با یکدیگر تفاوت دارد ]2،3[. به علت پیچیده بودن ماهیت این کاتالیست¬ها و تعداد زیاد اجزای کاتالیست مورد استفاده عواملی چون نقش اجزای کاتالیست، ساختار مراکز فعال و مکانیسم فرآیند هنوز به درستی روشن نیست ]4،5[.
کاتالیست¬های زیگلر- ناتا بواسطه دارا بودن مواضع فعال و ساختار متفاوت، تعداد زیاد اجزاء و همچنین ایجاد پدیده¬های فیزیکی- شیمیایی نظیر محدودیت¬های انتقال جرم در فصل مشترک گاز-مایع در راکتورهای دوغابی، خرد شدن کاتالیست در ابتدای پلیمریزاسیون، محدودیت انتقال منومر به مواضع فعال و راههای انتقال گرما، سینتیک پیچیده¬ای دارند ]6[.
کاتالیست¬های زیگلر-ناتا فرم¬های متفاوتی دارند از قبیل کاتالیزورهای همگن ]2،3،7[ کاتالیزورهای شبه همگن ]6،8،9[ و کاتالیزورهای ناهمگن نگهداری شده و بدون نگهدارنده ]2،7[. در کاتالیزورهای نگهداری شده از یک پایه به منظور توزیع مناسب مواضع فعال استفاده می¬گردد ]3،6[. فرمول کلی این کاتالیزورها TiCl4/الکترون دهنده داخلی (Di)/یک ترکیب Mg است. Mg(OEt)2 در طی فرایند ساخت کاتالیست به MgCl2 تبدیل می¬شود و این ترکیب نقش بسیار مؤثری بعنوان نگهدارنده کاتالیست دارد ]10،11،13[. در سیستم این کاتالیستها علاوه بر الکترون دهنده داخلی در هنگام پلیمریزاسیون از الکترون دهنده خارجی نیز استفاده می¬شود. این کاتالیستها در صورت استفاده از الکترون دهنده های مناسب می¬توانند PP با شاخص تک آرایشی (I.I) بالا ایجاد کنند. نوع الکترون دهنده اهمیت خاصی در میزان محصول دهی و شاخص تک آرایشی کاتالیست دارد ]11،13،14[. در کاتالیزورهایی که ترکیب فنالات به عنوان الکترون دهنده داخلی در ساختار آنها بکار گرفته می¬شود، از یک ترکیب سیلان به فرمول کلی نیز به عنوان الکترون دهنده خارجی استفاده می¬شود. استفاده از این نوع الکترون دهنده های داخلی و خارجی در بسیاری از کارهای تحقیقاتی و صنعتی متداول است. البته نکته مهم این است که در سالهای اخیر از کاتالیزورهای همگن نوع متالوسن و متیل آلومینواکسین (MAO) برای پلیمریزاسیون پروپیلن استفاده شده و نتایج بسیار خوبی بدست آمده است، و این کاتالیزورها برای تهیه PP ایزوتاکتیک نیز نتایج خوبی را نشان داده¬اند ]15،16[. همچنین استفاده از H2 بعنوان عامل انتقال زنجیر برای کالیزورهای زیگلر-ناتا درحدود سال 1955 متداول گشت ]17[.
فصل اول: تاریخچه، دسته¬بندی و ساختار کاتالیست¬های زیگلر- ناتا
1-1 مقدمه2
1-2 تعریف کاتالیست¬های زیگلر- ناتا3
1-3 تاریخچه4
1-4 دسته بندی کاتالیست¬های زیگلر- ناتا5
1-4-1 کاتالیست¬های نسل اول5
1-4-2 کاتالیست¬های نسل دوم7
1-4-3 کاتالیست¬های نسل سوم7
1-4-4 کاتالیست¬های نسل چهارم8
1-4-5 کاتالیست¬های نسل پنجم8
1-4-6 کاتالیست¬های نسل ششم8
1-5 کاتالیست¬های نگهداری شده بر اساس MgCl29
1-6 کاتالیست¬های تهیه شده با نگهدارنده¬های Mg(OR)210
1-7 کاتالیست¬های بر اساس دو نگهدارنده11
1-8 نقش اجزای تشکیل دهنده کاتالیست12
1-8-1 طبیعت و درجه اکسیداسیون فلز واسطه12
1-8-2 ساختمان بلوری هالید فلز12
1-8-3 نگهدارنده14
1-8-3-1 ساختمان MgCl214
عنوان صفحه
1-8-3-2 ساختار منیزیم کلرید فعال14
1-8-3-3 نقش منیزیم کلرید15
1-8-3-4 ساختمان نگهدارنده سیلیکاتی16
1-8-4 الکترون دهنده داخلی (ID)19
1-8-5 الکترون دهنده خارجی (ED)21
1-8-6 کمک کاتالیست (کوکاتالیست)22
فصل دوم: سینتیک و مکانیسم پلیمریزاسیون
2-1 سینتیک پلیمریزاسیون¬های زیگلر- ناتا25
2-2 مقایسه رفتار سینتیکی کاتالیست¬های SMT با MT 26
2-3 مدل سینتیکی بوهم26
2-4 مکانیسم پلیمریزاسیون کاتالیزورهای زیگلر- ناتا28
2-4-1 مقدمه28
2-4-2 مکانیسم رشد در پیوند فلز واسطه- الکیل29
2-4-2-1 مکانیسم رشد در پیوند الکیل- فلز فعال کننده29
2-4-2-2 مکانیسم رشد در پیوند الکیل- فلز واسطه30
2-4-3 مکانیسم تریگر31
فصل سوم: بخش تجربی
3-1 مقدمه35
3-2 مواد35
3-3 وسایل و تجهیزات36
عنوان صفحه
3-3-1 مقدمه36
3-3-2 گلاوباکس36
3-3-3 راکتور تهیه کاتالیست37
3-3-4 سیستم انتقال و نگهداری اجزاء کاتالیست38
3-3-5 راکتور پلیمریزاسیون بوچی39
3-4 آماده سازی سیلیکا40
3-5 روش تهیه کاتالیست SMT41
3-5-1 مقدمه41
3-5-2 روش تهیه کاتالیست SMT-141
3-5-3 روش تهیه کاتالیست SMT-242
3-5-4 روش تهیه کاتالیست SMT-342
3-6 تهیه دوغاب کاتالیست44
3-7 تهیه محلول کمک کاتالیست44
3-8 تهیه محلول الکترون دهنده خارجی44
3-9 آماده سازی راکتور پلیمریزاسیون44
3-10 تعیین مقدار عنصر تیتانیوم در کاتالیست47
3-11 تهیه محلول کاتالیست برای اندازه¬گیری تیتانیوم47
3-12 اندازه¬گیری شاخص تک آرایشی پلیمر48
3-13 اندازه¬گیری متوسط ویسکوزیته جرم مولکولی48
3-14 شناسایی پلیمر53
عنوان صفحه
3-15 تکنیک SEM53
3 -16 تکنیک XRF54
3-17 تکنیک DSC56
فصل چهارم: بحث و نتیجه گیری
4-1 مقدمه58
4-2 اثر نسبت مولی آلومینیم به تیتانیوم بر پلیمریزاسیون58
4-3 اثر هیدروژن بر پلیمریزاسیون59
4-4 اثر دما بر پلیمریزاسیون63
4-5 اثر فشار بر پلیمریزاسیون64
4-6 اثر نسبت مولی Mg/Si بر فعالیت کاتالیست69
4-7 مطالعه مورفولوژی پلیمر با استفاده از SEM70
4-8 مطالعه مختصری از ساختمان کاتالیست با استفاده از تکنیک FTIR76
4-9 مطالعه رابطه بین دمای پلیمریزاسیون و Tm با استفاده از تکنیک DSC76
4-10 نتیجه گیری86
ضمیمه (I): مقایسه کاتالیست¬های SMT و MR
I-1 مقایسه اثر نسبت مولی آلومینیم به تیتانیوم بر پلیمریزاسیون در سیستم کاتالیستی تک¬نگهدارنده و دونگهدارنده88
I-2 مقایسه اثر هیدروژن بر پلیمریزاسیون پروپیلن91
I-3 مقایسه اثر دما بر پلیمریزاسیون پروپیلن94
I-4 مقایسه اثر فشار بر پلیمریزاسیون پروپیلن98
مراجع
شامل 110 صفحه فایل word
دانلود پایان نامه مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا