نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

اختصاصی از نیک فایل مقاله در مورد تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین


مقاله در مورد تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

مقاله کامل بعد از پرداخت وجه

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 129

 

فصل دوم

  1. 1 - مقدمه

در این فصل ما بر روی تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین تمرکز می نماییم.پیشرفتها در طراحی محفظه احتراق منجر به دماهای ورودی توربین بالا تر شده اند که به نوبه خود بر روی بار حرارتی و مولفه های عبور گاز داغ تاثیر می گزارد.دانستن تاثیرات بار حرارتی افزایش یافته از اجزایی که گاز عبور می کند طراحی روشهای موثرسرد کردن برای محافظت از اجزاء امری مهم است.گازهای خروجی از محفظه احتراق به شدت متلاطم می باشد که سطوح و مقادیر تلاطم 20تا 25% در پره مرحله اول می باشد.مولفه های مسیر گاز داغ اولیه ،پره های هادی نازل ثابت و پره های توربین درحال دوران می باشد. شراعهای توربین، نوک های پره، سکوها و دیواره های انتهایی نیز نواحی بحرانی را در مسیر گاز داغ نشان می دهد. برسی های کار بردی و بنیادی در ارتباط با تمام مولفه های فوق به درک بهتر و پیش بینی بار حرارتی به صورت دقیق تر کمک کرده اند . اکثر برسی های انتقال حرارت در ارتباط با مولفه های  مسیر گاز داغ مدل هایی در مقیاس بزرگ هستند که در شرایط شبیه سازی شده بکار می روند تا درک بنیادی از پدیده ها را فراهم سازد. مولفه ها با استفاده از سطوح صاف و منحنی شبیه سازی شده اند که شامل مدل های لبه راهنما و کسکید های  ایرفویل های مقیاس بندی شده می باشد. در این فصل، تمرکز بر روی نتایج آزمایشات انتقال حرارت بدست آمده توسط محققان گوناگون روی مولفه های مسیر گاز خواهد بود. انتقال حرارت به پره های مرحله اول در ابتدا تحت تاثیر پارامترهای از قبیل پروفیل دمای خروجی محفظه احتراق،تلاطم زیاد جریان آزاد و مسیر های داغ می باشد .انتقال حرارت به تیغه های روتور مرحله اول تحت تاثیر تلاطم جریان آزاد متوسط تا کم ، جریان های حلقوی نا پایدار ، مسیر های داغ و البته دوران می باشد.

  1. 1.1- سرعت خروجی محفظه احتراق و پروفیل های دما

سطوح تلاطم در محفظه احتراق خیلی مهم هستند که ناشی از تاثیر چشمگیر انتقال حرارت همرفتی به مولفه های مسیر گاز داغ در توربین می باشد. تلاطم تاثیر گزار بر روی انتقال حرارت توربین ها در محفظه احتراق تولید می شود که ناشی از سوخت به همراه گاز های کمپرسور می باشد.آگاهی از قدرت تلاطم تولید شده توسط محفظه احتراق برای طراحان در بر آورد مقادیر انتقال حرارت در توربین مهم است.تلاطم محفظه احتراق کاهش یافته، می تواند منجر به کاهش بار حرارتی در اجزاء توربین و عمر طولانی تر و همچنین کاهش نیاز به سرد کردن می شود. بر سی های انجام شده بر روی اندازه گیری سرعت خروجی محفظه احتراق و پروفیل های تلاطم متمرکز شده است.

Goldstein سرعت خروجی و پروفیل های تلاطم را برای محفظه احتراق مدل نشان داد.Moss وOldfield طیف های تلاطم را در خروجی های محفظه احتراق نشان دادند.هرکدام از بر سی های فوق در فشار اتمسفر و دمای کم انجام شد. اگرچه بدست آوردن بدست آوردن انرازه گیری ها تحت شرایط واقعی مشکل است اما برای یک طراح توربین گاز درک بهبود هندسه محفظه احتراق و پروفیل های گاز خروجی از محفظه امری ضروری است. این اطلاعات به بهبود شرایط هندسه و تاثیرات نیاز های سرد کردن توربین کمک می نماید.

اخیرا"،Goebel سرعت محفظه احتراق و پروفیل های تلاطم در جهت موافق جریان یک محفظه احتراق کوچک با استفاده از یک سیستم سرعت سنج دوپلر ولسیمتر(LDV)را اندازه گیری کردنند.آنهاسرعت نرمالیزه شده،تلاطم وپروفیل های دمای موجود برای تمام آزمایش های احتراق را نشان دادند.آنها یک محفظه احتراق از نوع قوطی مانندبکار رفته در موتور های توربین گاز مدرن را استفاده کردند، که در شکل1-2نشان داده شده است.جریان از کمپرسور و از طریق سوراخ ها وارد محفظه احتراق می شود و با سوخت محترق در محل های متفاوت در جهت موافق جریان مخلوط می شود. طراحی محفظه احتراق حداقل مستلزم یک افت فشار از طریق محفظه احتراق تا ورودی توربین است.فرایند محفظه احتراق توسط اختلاط تدریجی هوای فشرده با سوخت در محفظه قوطی شکل کنترل می شود. طراحان محفظه احتراق نوین نیز بر روی مشکلات و مسائل ترکیب و فرایند اختلاط  هوا-سوخت تمرکز می نمایند احتراق تمیز نیز یک مسئله و کانون برای طراحان ناشی از استاندارد های محیطی  الزامی شده توسط دولت فدرال آمریکا و EPA می باشد. با این حال ،طراح محفظه احتراق یک مسئله مورد بحث در این کتاب نمی باشد.

شکل 2-2 تاثیر احتراق بر روی سرعت محوری ،شدت تلاطم محوری،سرعت پیچ وتاب( مارپیچی )و شدت تلاطم پیچ وتاب را نشان  میدهد. تمام سرعت ها توسط خط مرکزی سرعت اندازه گیری شده و در مقابل شعاع نرمالیزه رسم شدند.جریان جرم و فشار هوا برای قدرت های مختلف احتراق اندازه گیری شدند.افزایش جریان سوخت باعث افزایش استحکام احتراق گردید.دمای شعله آدیاباتیک تغییر داده شد.هوای فشرده در یک موتور توربین گاز ناشی از فرایند تراکم پیش گرم می باشد .با این حال،در این برسی،هوا پیش گرم نمی شود.جریان جرم وفشار0.45 kg/s و6.8 اتمسفر بودند.دما های شعله از 71  تا 1980  متغیر بود.


دانلود با لینک مستقیم


مقاله در مورد تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

pojeh

اختصاصی از نیک فایل pojeh دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 191

 

مطالعه و بررسی جریان سیال و انتقال حرارت

فصل اول

مقدمه

1-1 جدایش جریان

محدوده مقادیر لزجت در سیالات مختلف بسیار وسیع است. مثلاً لزجت هوا در فشارها و درجه حرارتهای معمول، نسبتاً کوچک است. این مقدار کوچک لزجت در بعضی شرایط، نقش مهمی در توصیف رفتار جریان ایفا میکند. یکی از اثرات مهم لزجت سیالات در تشکیل لایه مرزی است.

جریان سیالی که بر روی یک سطح صاف و ثابت حرکت میکند را در نظر بگیرید. به تجربه ثابت شده است که سیال در تماس با سطح به آن میچسبد (شرط عدم لغزش). این پدیده باعث میشود که حرکت سیال در یک لایه نزدیک به سطح کند شود و ناحیهای به نام لایه مرزی بوجود میآید. در داخل لایه مرزی سرعت سیال از مقدار صفر در سطح به مقدار کامل خود افزایش مییابد، که معادل سرعت جریان در خارج از این لایه است. بعبارت دیگر، در لایه مرزی سرعت افقی در امتداد عمود بر سطح تغییر میکند، که این تغییرات در نزدیکی سطح بسیار شدید است. یک نمونه از توزیع سرعت در لایه مرزی تشکیل شده بر روی سطح یک جسم در شکل 1-1 نشان داده شده است.

 

لایه مرزی نزدیک یک صفحه تخت در جریان موازی با زاویه صفر نسبت به امتداد جسم، بعلت اینکه فشار استاتیکی در کل میدان جریان ثابت باقی میماند، نسبتاً ساده است. از آنجا که خارج از لایه مرزی سرعت ثابت باقی میماند و همچنین به خاطر اینکه در جریان بدون اصطکاک معادله برنولی معتبر است، فشار نیز ثابت باقی خواهد ماند. بنابراین فشار در امتداد لایه مرزی هم اندازه با فشار در خارج از لایه مرزی، ولی در فواصل مشابه است. بعلاوه در فاصله x مشخص از ابتدای صفحه، فرض میشود که فشار در امتداد ضخامت لایه مرزی ثابت باقی میماند. این اتفاق بطور مشابه برای هر جسمی با شکل دلخواه، زمانی که فشار خارج لایه مرزی در امتداد طول جسم تغییر کند نیز رخ میدهد. بعبارتی میتوان گفت فشار خارجی بر لایه مرزی اثر میگذارد. بنابراین برای حالتی که جریان عبوری از یک صفحه تخت داریم، فشار در سرتاسر لایه مرزی ثابت باقی میماند.

دو اثر بسیار مهم در جریان سیال، اثرات اینرسی و لزجت است. رابطه بین این دو اثر با یکدیگر مشخص کننده نوع جریان است. این رابطه بصورت پارامتر بدون بعد Re یا عدد رینولدز که برابر با اندازه نسبت نیروهای اینرسی به لزجتی است، تعریف میشود. نسبت نیروی اینرسی به نیروی لزجت برای یک المان سیال با بعد سطح، به وسیله رابطه زیر که همان عدد رینولدز است تعریف میشود:

(1-1)

بنابراین وقتی عدد رینولدز بزرگ است، اثرات اینرسی حاکم میشود و زمانی که کوچک است، اثرات لزجت قویتر است. شایان ذکر است که مفهوم عدد رینولدز در رابطه با مرزها که بر جریان اثر میگذارد، یک کمیت موضعی است، بعبارتی انتخابهای مختلف طول مشخصه L در محاسبه عدد رینولدز، منجر به مقادیر مختلفی برای این پارامتر خواهد شد. بنابراین جریان بر روی یک جسم ممکن است که محدوده وسیعی از اعداد رینولدز را شامل شود که بستگی به محلی دارد که مطالعه بر روی آن انجام میشود. بنابراین در بحث جریانی که از روی یک جسم عبور میکند، معمولاً طول مشخصه L بگونهای انتخاب میشود که نمایانگر یک بعد کلی از جسم باشد.

اگر حرکت ذرات سیال موجود در لایه مرزی به اندازه کافی به وسیله نیروهای اصطکاکی کاهش یابد، جدایش جریان بوجود میآید. بعبارتی دیگر میتوان گفت، جدایش جریان بدلیل کاهش زیاد اندازه حرکت یا مومنتوم جریان نزدیک دیوار اتفاق میافتد. میتوان با یک بحث هندسی در خصوص مشتق دوم سرعت u روی دیوار، پدیده جدایی جریان را تجزیه و تحلیل کرد.[1]

معادله بقای مومنتوم در لایه مرزی در امتداد محور x بصورت زیر است:


دانلود با لینک مستقیم


pojeh

جزوه انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف

اختصاصی از نیک فایل جزوه انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف دانلود با لینک مستقیم و پر سرعت .

جزوه انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف


جزوه انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف

این جزوه به صورت دستنویس است.

این جزوه درس انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف می باشد که به طور کامل به ارائه مباحث مطرح در این واحد درسی پرداخته است.

درس انتقال حرارت هسته ای از جمله دروس رشته مهندسی مکانیک گرایش هسته ای و مهندسی هسته ای در مقطع کارشناسی می باشد. این جزوه در 106 صفحه با کیفیت خوبی اسکن شده و امیدواریم در جهت کمک به شما عزیزان مورد استفاده قرار بگیرد.


دانلود با لینک مستقیم


جزوه انتقال حرارت هسته ای پروفسور محمد سعید سعیدی دانشگاه صنعتی شریف

حقیق و بررسی در مورد حرارت و الکترومغناطیس

اختصاصی از نیک فایل حقیق و بررسی در مورد حرارت و الکترومغناطیس دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 64

 

حرارت و انرژی الکترومغناطیسی

خورشید مهمترین منبع انتشار امواج الکترومغناطیسی مورد نیاز در سنجش از راه دور است. تمامی موارد در درجه حرارت بالاتر از صفر مطلق (273- درجه سانتی گراد) امواج الکترومغناطیسی ساطع می کنند. میزان انرژی ساطع شده از هر ماده تابعی از دمای سطحی ماده است. این خاصیت توسط قانون استفن – بولتزمن بیان شده است که عبارت است از :

W= δT4

W = کل تابش ساطع شده از سطح ماده بر حسب وات بر متر مربع (Wm-2)

δ = ثابت استفن – بولتزمن که برابر با 10-8Wm-2K-4 × 6697/5 است.

T= دمای مطلق (K°) مادهی ساطع کننده بر حسب درجه ی کلوین .

کل انرژی ساطع شده از یک ماده با توان چهارم دمای ماده نسبت مستقیم دارد یعنی با افزایش دما، سرعت تابش ساطع شده از ماده افزایش می یابد. نکته ی مهم آن است که معادله ی بالا برای شرایطی صادق است که ماده به عنوان جسم سیاه رفتار کند. جسم سیاه، جسمی فرضی است که تمام انرژی تابیده شده به آن را جذب و کل آن را ساطع می نماید. همانگونه که کل انرژی ساطع شده از یک جسم با دما تفییر می کند، توزیع انرژی ساطع شده نیز تغییر می یباد. تصویر 1-10 منحنی توزیع طیفی انرژی جسم سیاه با دمای بین 300 تا 6000 درجه ی کلوین و محور Y میزان توان انرژی ساطع شده از جسم سیاه را به فواصل یک میکرومتری طول موج نشان می دهد. مساحت زیر هر منحنی برابر کل تابش ساطع شده است. هر چه دمای جسم تشعشع کننده بیشتر باشد میزان کل تشعشعات ساطع شده از آن بیشتر خواهد بود. همانگونه که منحنی ها نشان می دهند، با افزایش درجه ی حرارت یک جابه جایی به سمت طول موج های کوتاه تر در هر نقطه ی اوج منحنی تشعشات جسم سیاه، دیده می شود. طول موجی که در آن تشعشات جسم سیاه به حداکثر می رسد، مرتبط با درجه ی حرارت آن جسم است که توسط قانون جابه جایی وین محاسبه می شود:

m=λ

Mλ= طول موج حداکثر انرژی ساطع شده ( μm )

A= ثابت وین ( μmK2898)

T= دمای K°

بنابراین برای جسم سیاه ، طول موجی که در آن حداکثر انرژی ساطع می شودف با دمای جسم سیاه نسبت عکس دارد.

معمولاً لامپ هایی از خود نور ساطع می کنند که روی منحنی انرژی ساطع شده از جسم سیاه در حرارت 3000 درجه ی کلوین قرار دارند. بنابراین این گونه لامپ ها نور آبی رنگ کمی از خود خارج می کند و ترتیب طیفی آن ها شبیه خورشید نیست.

حرارت سطح زمین حدود 300 درجه ی کلوین (27 درجه ی سانتی گراد) است. اصولاً حداکثر انرژی ساطع شده از سطح زمین در طول موج حدود 7/9 میکرومتر روی می دهد و چون این تابش ناشی از گرمای زمین است، بنابراین به آن انرژی « مادون قرمز حرارتی » می گویند. این انرژی قابل عکس برداری نیست، اما سنجنده های حرارتی مانند رادیومتر ها و اسکنر ها نسبت به آن حساسند. خورشید حداکثر انرژی را در طول موج 5/0 میکرومتر منتشر می کند و چشمان ما نسبت به این مقدار انرژی و طول موج حساس است، از این رو با وجود نور خورشیدی قارد به رؤیت سطح زمین می باشیم.

سنجش از دور حرارتی

امروزه معلوم شده است داده های حرارتی می توانند مکمل یکدیگر داده های سنجش از دور (داده های انعکاسی) باشند. (Alavi panah، 2001).

در سنجش از دور حرارتی برای تخمین دما از انرژی ساطع شده توسط اشیاء و پدیده ها استفاده می شود. نمودار 2-10 عواملی را که روی دمایی تابشی مؤثرند، نشان می دهد.


دانلود با لینک مستقیم


حقیق و بررسی در مورد حرارت و الکترومغناطیس