نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت آشنایی با پروتکل SSL‎

اختصاصی از نیک فایل پاورپوینت آشنایی با پروتکل SSL‎ دانلود با لینک مستقیم و پر سرعت .

پاورپوینت آشنایی با پروتکل SSL‎


پاورپوینت آشنایی با پروتکل SSL‎

دانلود پاورپوینت آشنایی با پروتکل SSL‎

این فایل در قالب پاورپوینت قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد

قالب: پاورپوینت

تعداد اسلاید: 32

توضیحات:

پروتکل امنیتی لایه انتقال (Transport Layer Security)، بر پایه لایه سوکت‌های امن (Secure Sockets Layer) که یکی از پروتکل‌های رمزنگاری است بنا شده‌است. این پروتکل امنیت انتقال داده‌ها را در اینترنت برای مقاصدی چون کار کردن با پایگاه‌های وب، پست الکترونیکی، نمابرهای اینتزنتی و پیام‌های فوری اینترنتی به کار می‌رود. اگرچه TLS و SSL با هم تفاوت‌های اندکی دارند ولی قسمت عمده‌ای از این پروتکل کم و بیش یکسان مانده است. لایه سوکت‌های امن (Secure Sockets Layer) یا اس‌اس‌ال (SSL) پروتکلی است که توسط شرکت Netscape برای رد و بدل کردن سندهای خصوصی از طریق اینترنت توسعه یافته است. SSL از یک کلید خصوصی برای به رمز درآوردن اطلاعاتی که بر روی یک ارتباط SSL منتقل می‌شوند استفاده می نماید. هر دو مرورگر Netscape Navigator و Internet Explorer (و امروزه تمام مرورگرهای مدرن) از این پروتکل پشتیبانی می‌نمایند. هم‌چنین بسیاری از وب‌سایت‌ها برای فراهم کردن بستری مناسب جهت حفظ کردن اطلاعات محرمانه کاربران (مانند شماره کارت اعتباری) از این پروتکل استفاده می‌نمایند. طبق آن‌چه در استاندارد آمده است. URLهایی که نیاز به یک ارتباط از نوع SSL دارند با :https به جای :http شروع می‌شوند. SSL یک پروتکل مستقل از لایه برنامه است (Application Independent). بنابراین، پروتکل‌هایی مانند FTP، HTTP و Telnet قابلیت استفاده از آن را دارند. با این وجود SSL برای پروتکل‌های FTP، HTTP و IPSec بهینه شده‌است.

فهرست:

تاریخچه و معماری

رمزنگاری متقارن

رمزنگاری نامتقارن

مقدمه ای بر رمزنگاری

تاریخچه

معماری SSL

فشرده سازی اطلاعات

عملکرد SSL


دانلود با لینک مستقیم


پاورپوینت آشنایی با پروتکل SSL‎

پایان نامه : بررسی پروتکل TCP/IP‎

اختصاصی از نیک فایل پایان نامه : بررسی پروتکل TCP/IP‎ دانلود با لینک مستقیم و پر سرعت .

پایان نامه : بررسی پروتکل TCP/IP‎


پایان نامه :  بررسی پروتکل TCP/IP‎

پایان نامه :  بررسی پروتکل TCP/IP‎

 

 

شرح مختصر : امروزه اکثر شبکه های کامپیوتری بزرگ و اغلب سیستم های عامل موجود از پروتکل  TCP/IP  استفاده و حمایت می نمایند . TCP/IP . امکانات لازم بمنظور ارتباط سیستم های غیرمشابه را فراهم می آورد . از ویژگی های مهم پروتکل فوق ، می توان به مواردی همچون : قابلیت اجراء بر روی محیط های متفاوت ، ضریب اطمینان بالا ،قابلیت گسترش و توسعه آن ، اشاره کرد . از پروتکل فوق، بمنظور دستیابی به اینترنت و استفاده از سرویس های متنوع آن نظیر وب و یا پست الکترونیکی استفاده می گردد . تنوع پروتکل های موجود در پشته TCP/IP و ارتباط منطقی و سیستماتیک آنها با یکدیگر، امکان تحقق ارتباط در شبکه  های کامپیوتری را با اهداف متفاوت ، فراهم می نماید. فرآیند برقراری یک ارتباط ، شامل تبدیل نام کامپیوتر به آدرس  IP معادل ، فعالیت های مشخص نمودن موقعیت کامپیوتر مقصد ، بسته متعددی نظیر : بندی اطلاعات ، آدرس دهی و روتینگ داده ها بمنظور ارسال موفقیت آمیز به مقصد مورد نظر ، بوده که توسط مجموعه پروتکل های موجود در پشته  TCP/IP انجام می گیرد .

فهرست :

معرفی پروتکل TCP/IP

 پروتکل  TCP\IP  چیست

لایه های پروتکل  TCP/IP

لایه  Application

لایه    Transport

لایه Internet

لایه   Network Interface

تفاوت بین لایه های TCP/IP و OSI

آدرس IP

انواع آدرس های IP

IP Header در آدرس های IP

  IP  آدرسهای از نوع IP Unicast

تقسیم بندی آدرسهای   IP

کلاس A

کلاس   B

کلاس C

کلاس D

کلاس E

پورت   TCP/UDP

سوکت    (socket)

ارسال اطلاعات با استفاده از TCP\IP

لایه  Transport پروتکل   UDP

لایه Internet پروتکل IP

عملیات انجام شده توسط IP

لایه Internet  پروتکل ICMP

لایه اینترنت   پروتکل IGMP

لایه Internet  پروتکل  ARP

Physical Address Resolution

مدیریت  IP Multicasting

آدرس دهی Multicast

Multicasting  روی یک شبکه فیزیکی واحد

Multicasting بین قسمت های مختلف شبکه

تعیین حوزه Multicast

برنامه های عیب یابی

 برنامه های ارتباطی

 نرم افزارهای سمت سرویس دهنده

بررسی   resoultion name

Static IP mapping

فایل  Hosts

فایل LmHosts

Dynamic IP mapping

Name Resoulation  در ویندوز

  فرآیند Host name Resolution

بررسی و نحوه فرآیند انتقال اطلاعات

واژگان بسته های اطلاعات  (Packets)

 اجزاء یک فریم

 جریان انتقال اطلاعات ( از کامپیوتر مبداء تا کامپیوتر مقصد )

   لایه Application

   لایه Transport

   لایه  Internet

 لابه اینترفیس شبکه

 عملیات در کامپیوتر مقصد

فصل پنجم (بررسی روتینگ داده ها)

 مقدمه

 مفهوم روتینگ

 روتینگ پویا و ایستا

 پروتکل های روتینگ پویا

روتینگ IP

 جدول روتینگ

 توزیع بسته های اطلاعاتی

 ارسال اطلاعات بین روترها

فهرست منابع فارسی

فهرست منابع انگلیسی

چکیده انگلیسی


دانلود با لینک مستقیم


پایان نامه : بررسی پروتکل TCP/IP‎

دانلود مقاله پروتکل مدیریت گروه اینترنت (IGMP)

اختصاصی از نیک فایل دانلود مقاله پروتکل مدیریت گروه اینترنت (IGMP) دانلود با لینک مستقیم و پر سرعت .

 

 

 

IGMP ، که در RFC 3376 تعریف شده ، توسط میزبانها و مسیریاب ها برای مبادلة اطلاعات عضویت Multicast بر روی LAN استفاده می شود . IGMP از ماهیت پخشی LAN استفاده می کند تا تکنیکی کارآمد برای تبادل اطلاعات بین چندین میزبان و مسیریاب‌ها را فراهم نماید . در حالت کلی ، IGMP دو عملکرد اصلی را حمایت می کند :
1ـ میزبان ها پیغامهایی به مسیر یاب ها می فرستند تا مشترک یک گروه Multicaset تعریف شده توسط یک آدرس Multicaset شوند یا اشتراک خود را از آن حذف نمایند .
2ـ مسیریاب ها به صورت دوره ای بررسی می نمایند کدام گروههای Multicaset ، مورد نظر کدام میزبانها می باشند .
IGMP در حال حاضر در روایت 3 قرار دارد . در IGMPV1 ، میزبانها می توانند به گروه Multicaset ملحق شوند و مسیریاب ها تایمری را برای حذف اشتراک اعضای گروه استفاده می کنند . IGMPV2 باعث می شود اشتراک یک میزبان به طور مشخص از یک گروه حذف شود . اولین دو روایت ، ضرورتاً از مدل عملیاتی زیر استفاده نموده اند :
• گیرنده ها باید مشترک گروههای Multicaset گردند .
• مبدأها نیازی به مشترک شدن در گروه های Multicaset ندارند .
• هر میزان می تواند ترافیک را به هر گروه Multicaset بفرستد.
این روش بسیار کلی است اما نقاط ضعفی نیز دارد :
1ـ گسترش گروههای Multicaset آسان است . حتی اگر فیلترهایی در سطح کاربرد برای حذف بسته های ناخواسته وجود داشته باشد ، این بسته ها هنوز منابع عمده ای را در شبکه و درگیرنده ای که باید آنها را پردازش کند ، مصرف می کنند .
2ـ ایجاد درخت های توزیع Multicaset مشکل ساز است . دلیل آن ، مشخص نبودن محل مبدأها می باشد .
3ـ یافتن آدرس های Multicaset منحصر به فرد سراسری مشکل است . همیشه این امکان وجود دارد که گروههای Multicaset دیگری ، همان آدرس Multicaset را بکار ببرند .
IGMPv3 این نقاط ضعف را اینگونه مورد توجه قرار می دهد :
1ـ دادن اجازه به میزبانها برای مشخص نمودن لیست میزبانهایی که از آنها ترافیک یافت می شوکد . ترافیک از میزبانهای دیگر ،‌در مسیریاب ها مسدود می شود .
2ـ دادن امکان به میزبانها برای مسدود نمودن بسته هایی که مبدأ آنها ترافیک ناخواسته می فرستد .
ادامة این بخش ، IGMPv3 را مورد بررسی قرار می دهد .

 

قالب پیغام IGMP
همة پیغامهای IGMP در قالب datagram های IP فرستاده می شود . روایت فعلی ، دو نوع پیغام تعریف می کند : درخواست عضویت و گزارش عضویت .
پیغام درخواست عضویت توسط مسیریاب Multicaset فرستاده می شود . سه نوع زیر نوع دارد : یک درخواست عمومی ، برای مشخص نمودن اینکه کدام گروهها اعضایی در یک شبکه دارند ؛ درخواست گروه خاص ،‌به منظور مشخص نمودن اعضای گروه خاص در شبکة متصل شده استفاده می شود ؛ و درخواست گروه - و - مبدأ خاص ،‌برای تعیین اینکه آیا هر دستگاه متصل ، خواهان دریافت بسته های ارسالی به آدرس Multicaset خاص ، از هر مبدأ مشخص شده در لیست ،‌می باشد . قالب پیغام را نشان می دهد که شامل فیلترهای زیر است:
• نوع : نوع این پیغام را مشخص می کند .
• حداکثر زمان پاسخ : مشخص کنندة حداکثر زمان مجاز قبل از ارسال گزارش پاسخ در واحد ثانیه است .
• checksum : کد آشکار کنندة خطای محاسبه شده به صورت جمع متمم یک 16 بیتی همة کلمات 16 بیتی در پیغام می باشد . برای انجام محاسبه ، فیلد cheksum با صفر مقدار اولیه داده می شود . این همان الگوریتم Checksum استفاده شده در Ipv4 است .
• آدرس گروه : برای پیغام درخواست عمومی ، صفر است ؛ زمانی که درخواست گروه - مبدأ خاص ارسال می شود، آدرس معتبر گروه multicast در IP.
• پرچمS: با یک شدن آن، به همة مسیریاب های گیرندة multicast اعلام می‌کند که آنها باید به روزآوری های معمول تایمر را که با دریافت درخواست انجام می دهند، کنار بگذارند.
• (querier's robustness variable)QRV: اگر غیر صفر باشد، فیلد QRV حاوی مقدار RV استفاده شده توسط فرستنده درخواست است. مسیریاب ها مقدار RV را از جدیدترین درخواست دریافت شده، به عنوان مقدار RV خود استفااده می کنند، مگر اینکه جدیدترین RV دریافت شده، صفر باشد، که در این حالت، گیرنده ها مقدار پیش فرض یا مقدار بدست آمدة آماری را استفاده می کنند. این RV نشان می دهد که چند دفعه یک میزبان یک میزبان یک گزارش را مجدد ارسال کند تا مطمئن شود توسط هر مسیر یاب multicast از بین نمی رود.
• (querier's querier internal code)QQIC: مقدار QI(بازة درخواست) استفاده شده توسط فرستندة درخواست را مشخص می کند، که تایمری برای فرستادن چندین درخواست است. مسیریابهای multicast که فرستندة درخواست جاری نمی باشند، مقدار QI را از جدیدترین درخواست دریافت شده؛ صفر باشد در این حالت، مسیریاب های دریافت کننده، از مقدار پیش فرض QI استفاده می کنند.
• تعداد مبدأها: مشخص می کند که چه اعداد آدرس مبدأ در این پرس و جو موجود است. این مقدار فقط برای درخواست گروه- و مبدأ خاص، غیر صفر است.
• آدرسهای مبدأ: اگر تعداد مبدأها N باشد، در این صورت Nآدرس 32 بیتی unicast به پیغام افزوده می شود.
یک گزارش عضویت شامل فیلدهای زیر است:
• نوع: نوع این پیغام را مشخص می کند.
• Checksum:کد آشکار کنندة خطایی است که به صورت جمع متمم یک 16 بیتی تمام کلمات 16 بیتی در پیغام محاسبه می شود.
• تعداد رکوردهای گروه: تعداد رکوردهای گروه موجود در این گزارش را مشخص می کند.
یک رکود گروه شامل فیلدها است.
• نوع رکورد: این نوع رکورد را تعریف می کند، همانگونه که توضیح داده خواهد شد.
• طول دادة کمکی: طول فیلد دادة کمکی بر حسب کلمات 23 بیتی است.
• تعداد مبدأها: مشخص می کند چخ تعداد آدرس مبدأ در این رکورد وجود دارد.
• آدرس multicast: آدرس IP multicast که این رکورد به آن تعلق دارد.
• آدرسهای مبدأ: اگر تعداد منبع ها N باشد، در این صورت، N آدرس unicast 32 بیتی به این پیغام اضافه می شود.
• دادة کمکی: اطلاعات اضافی موجود در این رکورد است. در حال حاضر، مقادیر دادة کمکی تعریف نشده است.

 

عملکرد IGMP
هدف هر میزبان در استفاده از IGMP، شناساندن خود به عنوان عضوی از یک گروه با آدرس multicast مشخص، به میزبان های دیگر LAN و همة مسیریاب های LAN می باشد. IGMP Pv3، این توانایی را به میزبان ها می دهد که عضویت گروه را همراه با توانایی های فیلتر نمودن نسبت به مبدأها، اعلام نماید. میزبان می تواند اعلام کند که می خواهد ترافیک را از همة منابع فرستنده به یک گروه، به جز برخی منابع خاص (مود EXCLUDE) دریافت نماید؛ یا می خواهد ترافیک را فقط از برخی منابع خاص ارسال کننده به گروه(مود INCLUDE) دریافت کند. به منظور الحجاق شدن به گروه، میزبان، پیغام گزارش عضویت IGMP را می فرستد، که در آن، فیلد آدرس گروه، آدرس multicast آن گروه می باشد. این پیغام در یک IP diagram با همان آدرس مقصد ,ulticast فرستاده می شود. به عبارت دیگر، فیلد آدرس گروه در پیغام IGMP و فیلد آدرس مقصد سرآمد IP بسته بندی کننده، مشابه هستند. همة میزبانهایی که در حال حاضر اعضای این گروه multicast می باشند، این پیغام را دریافت خواهند نمود و در مورد عضو جدید گروه اطلاع می یابند. هر مسیریاب متصل به این LAN، باید به تمام آدرسهای IP multicast گوش دهد تا همة گزارشات را بشنود.
به منظور حفظ لیست جاری معتبر حاوی آدرسهای گروه های فعال، یک مسیریاب multicast به صورت دوره ای پیغام درخواست عمومی IGMP را صادر می نماید که در یک IP diagram با آدرس Multicast همة میزبانها فرستاده می شود. هز میزبانی که هنوز می خواهد عضوی از یک یا چند گروه multicast بماند، باید datagram هایی را با آدرس همة میزبانها بخواند. هنگامی که چنین میزبانی، این درخواست را دریافت می کند، باید با پیغام گزارش برای هر گروهی که برای آن ادعای عضویت می‌کند، پاسخ دهد.
توجه داشته باشید که مسیریاب multicast نیازی به دانستن مشخصة هر میزبان در گروه ندارد. در عوض، نیاز دارد بداند که حداقل یک عضو گروه هنوز فعال است. بنابراین، هز میزبان در گروهی که درخواستی را دریافت می کند، تایمری را با تأخیری تصادفی مقدار می دهد. هز میزبانی که ادعای عضویت میزبان دیگر را در آن گروه می‌شنود، از گزارش خود صرف نظر می کند. اگر گزارش دیگری شنیده نشود و تایمر به انتها برسد، میزبان گزارشی را ارسال می‌کند. با این طرح، فقط یک عضو هر گروه باید گزارش را برای مسیریاب multicast تهیه کند.
هنگامی که یک میزبان گروهی را ترک می کند، پیغام ترک گروه را به همة مسیریاب‌هایی با آدرس multicast ایستا می فرستد. این عمل با فرستادن پیغام گزارش با امکان EXCLUDE و لیست آدرسهای مبدأ تهی انجام می گیرد؛ یعنی، همة مبدأها باید حذف شوند، و به طور مؤثر گروه را ترک می کند. هنگامی که مسیریاب چنین پیغامی را برای گروهی دریافت می کند که اعضایی برای گروه در رابط پذیرش قرار دارند، نیاز دارد بداند آیا اعضای دیگری برای گروه باقی مانده اند. برای این منظور،
مسیریاب، پیغام درخواست گروه خاص را بکار می برد.

 

عضویت گروه با Ipv6
IGMP برای عملکرد با Ipv4 تعریف شده و از آدرسهای 32 بیتی استفاده می کند. اینترنت های Ipv6 عملکرد را نیاز دارند. به جای تعریف روایت مجزایی از IGMP برای Ipv6، عملکرد آن در روایت جدید پروتکل کنترل پیغام اینترنت (ICMPv6) قرار گرفته است. ICMv6 شامل همة عملکرد ICMv4 و IGMP می باشد. برای حمایت از Multicast، ICMPv6 شامل درخواست عضویت گروه و پیغام گزارش عضویت گروه می باشد، که مشابه IGMP استفاده می شود.

 

پروتکل مسیریاب
مسیریاب های ایننرنت، مسئول دریافت و هدایت بسته ها از طریق مجموعه شبکه های متصل به یکدیگر می باشند. هر مسیریاب، تصمیم مسیریابی را بر مبنای آگاهی از توپولوژی و شرایط ترافیک و تأخیر در ایننرنت انجام می دهد. در یک اینترنت ساده، یک طرح ثابت مسیریابی امکان پذیر است. در اینترنت های پیچیده تر، درجه ای از همکاری پویا بین مسیریاب ها لازم است. در حالت خاص، مسیریاب باید از بخشی از شبکه که دچار شکست شده است اجتناب نماید و همچنین باید از بخشی که دچار ازدحام می باشد نیز صرف نظر کند. به منظور انجام چنین تصمیمات مسیریابی پویایی، مسیریاب ها اطلاعات مسیریابی را با استفاده از پروتکل مسیریابی خاص برای آن منظور، مبادله می نمایند. اطلاعاتی در مورد وضعیت اینترنت، بر حسب اینکه کدام شبکه ها می توانند با کدام مسیریاب قابل دسترسی باشند، و خصوصیات تأخیر مسیریاب های گوناگون، مورد نیاز است.
با در نظر گرفتن تابع مسیریابی، متمایز نمودن این دو مفهوم دارای اهمیت است:
• اطلاعات مسیریابی: اطلاعاتی است در مورد توپولوژی و تأخیرها در اینترنت.
• الگوریتم مسیریابی: تلگوریتم استفاده شده برای گرفتن تصمیم مسیریابی برای datagram خاص، بر مبنای اطلاعات مسیریابی جاری می باشد.

 

سیستم های خودکار
به منظور ادامة بحث پروتکل های مسیریابی، نیاز به معرفی مفهوم سیستم خودکارذاست. سیستم خودکار (as) خصوصیات زیر را از خود نشان می دهد:
1- ی; AS، مجموعه ای از مسیریاب ها و شبکه ها است که توسط یک سازمان مدیرینت می شوند.
2- یک AS شامل گروهی از مسیریاب ها است که اطلاعات را از طریق پروتکل مبادله می نمایند.
3- به جز در زمان شکست، یک AS مرتبط می باشد(بر حسب مفهوم مرتبط در توری گراف)؛ یعنی، مسیری بین هر زوج گروه وجود دارد.
یک پروتکل مسیریابی مشترک، که به عنوان پروتکل مسیریاب داخلی (IRP) شناخته می شود، اطلاعات مسیریابی را بین مسیریاب های داخلی AS عبور می دهد. این پروتکل در AS استفاده می شود و نیازی به پیاده سازی در خارج از سیستم ندارد. این انعطاف به IRP ها امکان می دهد به کاربردها و نیازهای خاص متعلق باشند. به هر حال ممکن است اینترنت با بیش از یک AS ساخته شود. برای مثال، تمام LAN های یک سایت، مانند مجموعة اداری یا کمپینگ، می توانند توسط مسیریاب ها متصل شوند تا یک AS را تشکیل دهند. این سیستم می تواند از طریق یک شبکة گسترده، به AS های دیگر متصل شود.
حالت، الگوریتم های مسیریابی و اطلاعات جداول مسیریابی استفاده شده توسط مسیریاب‌های AS های مختلف، ممکن است متفاوت باشد.
به هر حال، مسیریاب های یک AS نیازمند یک سطح حداقل از اطلاعات مربوط به شبکه‌های قابل دسترسی در خارج از سیستم می باشند. به پروتکل استفاده شده به منظور عبور اطلاعات مسیریابی بین مسیریاب ها در AS های متفاوت، پروتکل مسیریاب خارجی (ERP) گفته می شود.
می توان انتظار داشت که ERP نیاز به عبور دادن اطلاعات کمتری نسبت به IRP به دلایل زیر داشته باشد. اگر یک datagram قرار باشد از یک میزبان در یک AS به میزبانی در AS دیگر انتقال یابد، یک کسیریاب در سیستم اول، فقط نیازمند تعیین AS مقصد و طرح مسیری برای رسیدن به آن سیستم مقصد خواهد بود. با وارد شدن data gram به as مربوط نمی باشد، و چیزی در مورد جزئیات مسیر دنبال شده در AS مقصد نمی داند.
در ادامة این بخش، نگاهی داریم به مهمترین مثالهای این دو نوع پروتکل مسیریابی: BGP و OSPF. اما اول، نگاهی به راه دیگر مشخص نمودن پروتکل های مسیریابی مفید است.

 

گرایشهای مسیریابی
پروتکل های مسیریابی اینترنت، یکی از سه شیوة جمع آوری و استفاده از اطلاعات مسیریابی را بکار می گیرند: مسیریابی بردار- فاصله، مسیریابی حالت- اتصال، و مسیریابی بردار- مسیر یابی بردار- فاصله نیازمند این است که هر گره (مسیریاب یا میزبانی که پروتکل مسیریابی را پیاده سازی می نماید)، اطلاعات را با گره های همسایه مبادله نماید. اگر دو گروه هر دو به طور مستقیم به یک شبکه متصل باشند همسایه هستند.
به این منظور، هر گره، برداری از ارزش اتصالات برای هر شبکة متصل شده به طور مستقیم، و بردار فاصله و بردار گام بعدی را برای هر مقصد نگهداری می کند. پروتکل اطلاعات مسیریابی نسبتاً ساده (RIP) از این شیوه استفاده می کند.
مسیریابی بردار- فاصله نیازمند انتقال میزان قابل توجهی اطلاعات توسط هر مسیریاب می‌باشد. هر مسیریاب باید بردار فاصله را به همة همسایگانش بفرستد. آن بردار حاوی ارزش مسیر تخمینی به همة شبکه ها در این پیکربندی است. علاوه بر آن، هنگامی که تغییر عمده ای در ارزش یک اتصال انجام می گیرد، یا زمانی که یک اتصال قابل دسترس نمی باشد، زمان قابل توجهی برای انتشار این اطلاعات از طریق اینترنت لازم است.
مسیریابی حالت- اتصال، برای غلیه بر نقاط ضعف مسیریابی بردار- فاصله طراحی گردید. هنگامی که مسیریاب آماده سازی می شود، ارزش اتصال در هر یک از رابط‌های شبکة خود را مشخص می کند. سپس، این مسیریاب این مجموعه ارزش های اتصالات را به همة مسیریاب ها در توپولوژی اینترنت اعلام می کند، و نه فقط به مسیریاب های همسایة خود. از آن زمان، این مسیریاب، بر ارزشهای اتصالات خود نظارت دارد. هر زمان که تغییر عمده ای صورت گیرد (افزایش یا کاهش عمدة ارزش اتصال، ایجاد اتصال جدید، غیر قابل استفاده شده اتصال جاری)، این مسیر‌یاب مجدد مجموعه ارزشهای اتصالات خود را به همة مسیریاب ها در آن پیکربندی اعلام می کند.
چون هر مسیریاب ارزش اتصالات همة مسیریاب های آن پیکربندی را دریافت می کند، می‌تواند یک توپولوژی از کل پیکربندی بسازد و سپس کوتاه ترین مسیر را به هر شبکة مقصد، محاسبه نماید. با انجام این عمل، این مسیریاب می تواند جدول مسیریابی خود را بسازد، و اولین گام به هر مقصد را لیست نماید. چون مسیریاب نمایشی از کل شبکه دارد، از رواست توزیع شدة الگوریتم مسیریابی، همانگونه که در مسیریابی بردار- فاصله انجام می گیرد، استفاده نمی کند. در عوض، مسیریاب می تواند هر الگوریتم مسیریابی را برای مشخص نمودن کوتاه ترین مسیرها بکار ببرد. در عمل، الگوریتم Dijkstra استفاده می شود. پروتکل اولین کوتاه ترین مسیر باز (OSPF)، مثالی است از نوعی پروتکل مسیریابی که از مسیریابی حالت- اتصال استفاده می کند. نسل دوم الگوریتم مسیریاب برای ARPANET نیز از این روش استفاده می کند.
هر دو روش حالت- اتصال و بردار- فاصله، برای پروتکل های مسیر یاب داخلی استفاده شده اند. این روشها برای پروتکل مسیریاب خارجی مؤثر نمی باشند.
در پروتکل مسیریابی بردار- فاصله، هر مسیریاب، به همسایگانش، برداری را می فرستد که هر شبکة فایل دسترسی توسط آن را، همراه با معیار فاصلة مربوط به مسیری به آن شبکخ، لیست نموده است. هر مسیر یاب، یک پایگاه دادة مسیریابی بر مبنای این به روزآوری های همسایگانش می سازد، اما مشخصة مسیریاب ها و شبکه های میانی در هر مسیر خاص را نمی داند. دو مشکل با این روش برای پروتکل مسیریاب خارجی وجود دارد:
1-پروتکل بردار- فاصله فرض می کند که همة مسیریاب ها یک معیار مشترک فاصله را دارند که با آن در مورد ازجحیت های مسیریاب قضاوت می کنند. این حالت در بین ASهای مختلف برقرار نیست. اگر مسیریاب های متفاوتی، معانی متفاوتی به یک معیار نسبت دهند، امکان ایجاد مسیرهایی پایدار، و بدون حلقه ممکن است وجود نداشته باشد.
2-یک AS ممکن است اولویت های متفاوتی با AS های دیگر داشته باشد و ممکن است محدودیت هایی داشته باشد که استفاده از AS های خاص دیگر را منع نماید. الگوریتم بردار- فاصله، اطلاعاتی را در مورد AS هایی که در یک مسیریاب ملاقات خواهند شد، ارائه نمی دهد.
در یک پروتکل مسیریابی حالت- اتصال، هر مسیریاب، معیارهای اتصال خود را به همة مسیریاب های دیگر اعلام می کند. هر مسیریاب، تصویری از توپولوژی کامل این پیکربندی می سازد و سپس محاسبة مسیریابی را انجام می دهد. این شیوه نیز اگر در پروتکل مسیریاب خارجی بکار رود مشکلاتی دارد:
1-AS های متفاوت ممکن است از معیارهای متفاوتی استفاده کنند، و محدودیت های متفاوتی داشته باشند. اگرچه پروتکل حالت- اتصال، به مسیریاب اجازة ساختن تصویری از تمام توپولوژی نمی دهد، معیارهای استفاده شده، ممکن است از یک AS به دیگری متفاوت باشند، و اجرای الگوریتم مسیریابی یکنواخت را غیر ممکن نمایند.
2-هجوم اطلاعات حالت اتصال به همة مسیریاب های پیاده کنندة پروتکل مسیریاب خارجی در چندین AS، ممکن است قابل کنترل نباشد.
راه دیگر، به نام مسیریابی بردار- مسیر، معیارهای مسیریابی را کنار می گذارد و فقط اطلاعاتی را فراهم می کند در مورد اینکه کدام شبکه ها می توانند توسط یک مسیریاب قابل دسترس باشند، و AS هایی که باید برای رسیدن به آنها گذر کنند. این شیوه با الگوریتم بردار- فاصله متفاوت است، از دو جنبة: اول، روش بردار- مسیر، شامل تخمین فاصله یا ارزش نیست. دوم، هر بلوک از اطلاعات مسیریابی، همة AS های ملاقات شده به منظور رسیدن به شبکة مقصد توسط این مسیریاب را لیست می نماید.
چون یک بردار مسیر، AS هایی را لیست می کند که یک datagram باید از آنها عبور کند، اگر این مسیریاب را دنبال نماید، این اطلاعات مسیر باعث می شود مسیریاب، سیاست مسیریابی را اجرا کند. یعنی، مسیریاب ممکن است تصمیم بگیرد از مسیر خاصی اجتناب نماید تا مانع عبور از طریق یک AS خاص شود. برای مصال، اطلاعاتی که محرمانه است، ممکن است به AS های خاص محدود شود. یا یک مسیریاب ممکن است اطلاعاتی در مورد کارایی یا کیفیت بخشی از اینترنت داشته باشد که در یک AS قرار دارد و باعث می شود این مسیریاب از آن AS اجتناب نماید. مثالهایی از معیارهای کارایی یا کیفیت عبارتند از سرعت اتصال، ظرفیت، تمایل به ازدحام، کیفیت کلی عملکرد. معیار دیگری که می تواند استفاده شود، به حداقل رساندن تعداد AS های میانی است.

 


پروتکل گذرگاه مرزی
پروتکل گذرگاه مرزی (BGP) برای استفاده به همراه اینترنت هایی توسعه داده شد که مجموعه TCP/IP را بکار می گیرند، اگرچه این مفاهیم برای هر اینترنت قابل بکارگیری هستند. BGP به پروتکل مسیریاب خارجی مطلوب برای اینترنت تبدیل شده است.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   58 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلود مقاله پروتکل مدیریت گروه اینترنت (IGMP)

مقاله پروتکل های مسیر یابی در شبکه های حسگر بی سیم

اختصاصی از نیک فایل مقاله پروتکل های مسیر یابی در شبکه های حسگر بی سیم دانلود با لینک مستقیم و پر سرعت .

مقاله پروتکل های مسیر یابی در شبکه های حسگر بی سیم


مقاله  پروتکل های مسیر یابی در شبکه های حسگر بی سیم

امروزه امنیت شبکه یک مسأله مهم برای ادارات و شرکتهای دولتی و سازمان های کوچک و بزرگ است. تهدیدهای پیشرفته از سوی تروریست های فضای سایبر، کارمندان ناراضی و هکرها رویکردی سیستماتیک را برای امنیت شبکه می طلبد. در بسیاری از صنایع، امنیت به شکل پیشرفته یک انتخاب نیست بلکه یک ضرورت است.

در این سلسله مقالات رویکردی لایه بندی شده برای امن سازی شبکه به شما معرفی می گردد.  این رویکرد هم یک استراتژی تکنیکی است که ابزار و امکان مناسبی را در سطوح مختلف در زیرساختار شبکه شما قرار می دهد و هم یک استراتژی سازمانی است که مشارکت همه از هیأت مدیره تا قسمت فروش را می طلبد.

رویکرد امنیتی لایه بندی شده روی نگهداری ابزارها و سیستمهای امنیتی و روال ها در پنج لایه مختلف در محیط فناوری اطلاعات متمرکز می گردد.

۱- پیرامون

۲- شبکه

۳- میزبان

۴- برنامه  کاربردی

۵- دیتا

در این سلسله مقالات هریک از این سطوح تعریف می شوند و یک دید کلی از ابزارها و سیستمهای امنیتی گوناگون که روی هریک عمل می کنند، ارائه می شود. هدف در اینجا ایجاد درکی در سطح پایه از امنیت شبکه و پیشنهاد یک رویکرد عملی مناسب برای محافظت از دارایی های دیجیتال است. مخاطبان این سلسله مقالات متخصصان فناوری اطلاعات، مدیران تجاری و تصمیم گیران سطح بالا هستند.

محافظت از اطلاعات اختصاصی به منابع مالی نامحدود و عجیب و غریب نیاز ندارد. با درکی کلی از مسأله،  خلق یک طرح امنیتی استراتژیکی و تاکتیکی می تواند تمرینی آسان باشد. بعلاوه، با رویکرد عملی که در اینجا معرفی می شود، می توانید بدون هزینه کردن بودجه های کلان، موانع موثری بر سر راه اخلال گران امنیتی ایجاد کنید.

 

 

 

 

 

 

این مقاله به صورت  ورد (docx ) می باشد و تعداد صفحات آن 62صفحه  آماده پرینت می باشد

چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد

مقالات را با ورژن  office2010  به بالا بازکنید


دانلود با لینک مستقیم


مقاله پروتکل های مسیر یابی در شبکه های حسگر بی سیم

دانلود مقاله ارتباطات تحریک ‌پذیر زمانی در پروتکل

اختصاصی از نیک فایل دانلود مقاله ارتباطات تحریک ‌پذیر زمانی در پروتکل دانلود با لینک مستقیم و پر سرعت .

 

 

ارتباطات تحریک ‌پذیر زمانی در پروتکل شبکهCAN ا ( Time Triggered CAN)چکیده :
شبکه‌های صنعتی یکی از مباحث بسیار مهم در اتوماسیون می‌باشد. شبکه‌ی CAN به عنوان یکی از شبکه‌های صنعتی ، رشد بسیار روز افزونی را تجربه کرده است. در این میان ، عدم قطعیت زمان ارسال پیام‌ها در این پروتکل شبکه ، باعث می‌شود که کاربرد این شبکه در کاربرد‌های حیاتی با اشکال مواجه شود. یکی از راه‌حل‌‌های برطرف کردن این مشکل ، استفاده از تکنیک تحریک زمانی است که در ایت مقاله مورد بررسی قرار می‌گیرد.
کلید واژه‌ها : شبکه صنعتی ، تحریک زمانی ، CAN ارتباطات تحریک‌پذیر زمانی در پروتکل شبکه‌ی CAN

1) مقدمه
در محیط‌های صنعتی ، کارخانجات ، خطوط تولید و امثالهم ، اتصال میکروکنترلر‌ها ،‌ سنسورها (Sensor) و محرک‌ها (Actuator) با چندین نوع سیستم ارتباطی متفاوت به یکدیگر ، نوعی هنر معماری در الکترونیک و کامپیوتر است. امروزه ارتباطات از نوع تحریک‌پذیر زمانی به‌طور گسترده‌ای در پروتکل ارتباطات برپایه شبکه با پروتکل CAN (Controller Area Network) استفاده می‌شود. مکانیسم داوری (Arbitrating) در این پروتکل اطمینان می‌دهد که تمام پیام‌ها بر اساس اولویت شناسه (Identifier) منتقل می‌شوند و پیامی با بالاترین اولویت به هیچ عنوان دچار آشفتگی نخواهد شد. در آینده ، بسیاری از زیرشبکه‌های (SubNet) مورد استفاده در کاربرد‌های حیاتی ، به‌عنوان مثال در بخش‌هایی مثل سیستم‌های کنترل الکترونیکی خودرو (X-By-Wire) ، به سیستم ارتباطی جامعی نیاز دارند که دارای قطعیت ارسال و دریافت در هنگام سرویس‌دهی باشد. به‌ عبارتی ، در ماکزیمم استفاده از باس که به ‌عنوان محیط انتقال این نوع شبکه به‌کار می‌رود ، باید این تضمین وجود داشته باشد که پیام‌هایی که به ایمنی (Safety) سیستم وابسته هستند ، به موقع و به درستی منتقل می‌شوند. علاوه بر این باید این امکان وجود داشته باشد که بتوان لحظه‌ی ارسال و زمانی را که پیام ارسال خواهد شد را با دقت بالایی تخمین زد.
در سیستم با پروتکل CAN استاندارد ، تکنیک بدست آوردن باس توسط گره‌های شبکه بسیار ساده و البته کارآمد است. همان‌گونه که در قبل توضیح داده‌شده است ، الگوریتم مورد استفاده برای بدست آوردن تسلط بر محیط انتقال ، از نوع داوری بر اساس بیت‌های شناسه است. این تکنیک تضمین می‌کند که گره‌ای که اولویت بالایی دارد ، حتی در حالتی‌‌که گره‌های با اولویت پایین‌تر نیز قصد ارسال دارند ، هیچ‌گاه برای بدست آوردن باس منتظر نمی‌ماند. و با وجود این رقابت بر سر باس ، پیام ارسالی نیز مختل نشده و منتقل می‌شود. در همین جا نکته‌ی مشخص و قابل توجهی وجود دارد. اگر یک گره‌ی با اولویت پایین بخواهد پیامی را ارسال کند باید منتظر پایان ارسال گره‌ی با اولویت بالاتر باشد و سپس کنترل باس را در اختیار گیرد. این موضوع یعنی تاخیر ارسال برای گره‌ی با اولویت پایین‌تر ، ضمن این که مدت زمان این تاخیر نیز قابل پیش‌بینی و محاسبه نخواهد بود و کاملا به ترافیک ارسال گره‌های با اولویت بالاتر وابسته است. به عبارت ساده‌تر :
● گره یا پیام با اولویت بالاتر ، تاخیر کمتری را برای تصاحب محیط انتقال در هنگام ارسال پیش‌رو خواهد داشت.
● گره یا پیام با اولویت پایین‌تر ، تاخیر بیشتری را برای بدست‌گرفتن محیط انتقال در هنگام ارسال ، تجربه خواهد کرد.

یک راه حل برطرف کردن نیاز‌های ذکرشده در بالا ، استفاده از شبکه‌ی استاندارد CAN با اضافه‌کردن تکنیک تحریک زمانی (Time Trigger) به آن می‌باشد. استفاده از تکنیک تحریک زمانی در CAN ، طبق توضیحاتی که داده خواهد شد ، باعث اجتناب از این تاخیر می‌شود و باعث استفاده‌ی مفیدتر و کارآمدتر از پهنای باند شبکه ، به کمک ایجاد قطعیت در زمان‌های انتظار و ارسال ، می‌شود. به عبارت دیگر ، مزایای این شبکه با استفاده از تکنیک تحریک زمانی عبارت خواهد بود از :
● کاهش تاخیر‌های غیر قابل پیش‌بینی در حین ارسال
● تضمین ارتباط قطعی و تاخیر‌های قابل پیش‌بینی
● استفاده‌ی مفید‌تر و کارآمد از پهنای باند شبکه
با توجه به مکانیسم‌های پیش‌بینی شده در TTCAN ، این پروتکل زمان‌بندی پیام‌هایی با تحریک زمانی (TT) را به خوبی پیام‌هایی با تحریک رویداد (Event Trigger) را که قبلا در این پروتکل قرار داشت ، مدیریت می‌کند. این تکنیک اجازه می‌دهد که سیستم‌هایی که دارای عملگرهای بلادرنگ هستند نیز بتوانند از این شبکه استفاده کنند. همچنین این تکنیک انعطاف بیشتری را برای شبکه‌هایی که قبلا از CAN استفاده می‌کردند ، ایجاد می‌کند. این پروتکل برای استفاده در سیستم‌هایی که ترافیک دیتا بصورت مرتب و متناوب در شبکه رخ می‌دهد ، بسیار مناسب و کارآمد می‌باشد.
در این تکنیک ، ارتباطات بر پایه‌ی یک زمان محلی بنا شده است. زمان محلی توسط پیام‌های متناوب یک گره که به‌عنوان گره‌ی مدیر زمان (Time Master) تعیین شده است ، هماهنگ و تنظیم می‌شود. این تکنیک اجازه‌ی معرفی یک زمان سراسری و با دقت بالا را بصورت یکپارچه (Global) را ، در کل سیستم فراهم می‌کند. بر پایه‌ی این زمان ، پیام‌های متفاوت توسط یک سیکل ساده ، در پنجره‌هایی قرار می‌گیرند که متناسب با زمان پیام چیده شده است. یکی از مزایای بزرگ این تکنیک در مقایسه با شبکه‌ی CAN با روش زمان‌بندی کلاسیک ، امکان ارسال پیغام‌های تحریک‌ شونده‌ی زمانی با قطعیت و در پنجره‌های زمانی است.
اگر فرستنده‌ی فریم مرجع دچار خرابی شود (Fail) ، یک گره‌ی از پیش تعریف شده‌ی دیگر به‌طور اتوماتیک وظیفه‌ی گره‌ی مرجع را انجام می‌دهد. در این‌حالت ، گره‌ی با درجه‌ی پایین‌تر جایگزین گره‌ی با درجه‌ی بالاتر که دچار خرابی شده است ، می‌شود. حال اگر گره‌ی با درجه‌ی بالاتر ، تعمیر شده و دوباره به سیستم باز گردد ، به‌صورت اتوماتیک تلاش می‌کند تا به‌عنوان گره‌ی مرجع انتخاب شود. توابعی به‌صورت پیش‌فرض در تعاریف و خصوصیات TTCAN قرار داده شده است تا سیستم از این تکنیک خروج و بازگشت خودکار ، پشتیبانی کند. در ادامه‌ی این مقاله ، جزییات این پروتکل مورد بررسی دقیق‌تر قرار می‌گیرد.

2) پیاده‌سازی TTCAN :
پروتکل TTCAN بر اساس تحریک بر مبنای زمان و ارتباط پریودیک ، که توسط مدیر زمان هماهنگ می‌شود ، بنا شده است. در این پروتکل ، پیام مرجع (Reference Message) پیامی است که توسط مدیر زمان در شبکه انتشار پیدا می‌کند و حاوی اطلاعات زمان‌بندی پنجره‌های زمانی و اطلاعات انحصار پنجره‌ها به گره‌های مشخصی می‌باشد. پیام مرجع ، به‌سادگی از طریق بیت‌های شناسه‌اش قابل شناسایی است.
این پروتکل در دو سطح ایجاد شده است. در سطح اول پروتکل ، پیام مرجع ، فقط حاوی تعداد کمی از پیغام‌های کنترلی در حد یک بایت است و الباقی بیت‌ها نیز می‌توانند برای انتقال دیتا به‌کار روند. در سطح دوم پروتکل ، پیام مرجع ، اطلاعات و پیغام‌های کنترلی اضافی‌تر را حمل می‌کند. به عنوان مثال ، اطلاعات فعلی در مورد ساعت سراسری گره‌ی مدیر زمان فعلی را شامل می‌شود. پیام مرجع در این حالت محتوی چهار بایت اطلاعات است ضمن این‌که قابلیت کار با سیستم‌های رده‌ی پایین‌تر از نوع CAN (Downward Compatible) نیز حفظ شده است. چهار بایت باقی‌مانده در فریم نیز برای انتقال دیتا می‌تواند استفاده گردد.
مدت زمان بین دو پیام مرجع متوالی ، سیکل پایه (Basic Cycle) نامیده می‌شود. یک سیکل پایه از چندین پنجره‌ی زمانی (Time Windows) با اندازه‌های متفاوت ، تشکیل شده است که فضای کافی را برای فریم‌هایی که باید منتقل شوند فراهم می‌کند. این این موضوع در شکل زیر نمایش داده شده است.


شکل شماره 1 : سیکل پایه

 


پنجره‌های زمانی تعریف شده در یک سیکل پایه می‌تواند یکی از حالات زیر باشد و برای انتقال فریم پیام‌های پریودیک حالت و یا پیام‌های فوری و پیام‌های حاوی رخداد ، استفاده می‌شود :
● پنجره‌ی زمانی انحصاری (Exclusive Window)
● پنجره‌ی زمانی داوری (Arbitrating Window)
● پنجره‌ی زمانی آزاد (Free Window)
هر فریم پیام که در هریک از این پنجره‌ها ارسال می‌شود ، باید از استاندارد فریم CAN پیروی کند. پنجره‌های زمانی که برای ارسال پیام‌های پریودیک استفاده می‌شود ، پنجره‌ی زمانی انحصاری (Exclusive) نامیده می‌شوند. ابتدای یک پنجره‌ی زمانی انحصاری ، لحظه‌ی شروع یک ارسال را برای یک فرستنده‌ی خاص و از پیش تعیین شده ، مشخص می‌کند. اگر سیستم به درستی تعریف شده باشد و روشی که توسط آن ارتباطات را از پیش تعریف کرده‌اند ، سیستم را درست تحلیل کرده باشد ، هیچ تداخلی (Conflict) در این لحظه پیش نخواهد آمد. هرچند حتی اگر تداخلی نیز پیش آید ، سیستم داوری پیش‌بینی شده در CAN استاندارد ، یا همان داوری بر اساس بیت شناسه ، برقرار بوده و تعیین کننده و برطرف کننده‌ی تداخل پیش آمده خواهد بود. مشخص است که طراح سیستم قبل از آغاز به‌کار سیستم باید تصمیم بگیرد که کدام گره کدام پیام را در کدام پنجره‌ی زمانی ارسال کند. برای ایجاد انعطاف و کارایی بیشتر ، یک پنجره‌ی انحصاری می‌تواند در طول یک سیکل پایه ، بیش از یک بار تکرار شود. در پنجره‌های انحصاری ، اجازه‌ی ارسال مجدد یک پیام به‌صورت اتوماتیک ، وجود ندارد.


شکل شماره 2 : انواع پنجره‌های زمانی

در پاراگراف گذشته اشاره شد که در این پنجره‌های زمانی انحصاری ممکن است فریم پیام‌های فوری ارسال شود. این پنجره‌ها را پنجره‌های زمانی داوری (Arbitrating Time Window) نام‌گذاری کرده‌اند.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   12 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ارتباطات تحریک ‌پذیر زمانی در پروتکل