نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی

اختصاصی از نیک فایل پایان نامه مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی دانلود با لینک مستقیم و پر سرعت .

پایان نامه مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی


پایان نامه مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی

 

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:186

پایان نامه کارشناسی ارشد در مهندسی شیمی گرایش ترمودینامیک و سینتیک

عنوان :  مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی با استفاده از نتایج هدایت سنجی

فهرست مطالب:
فصل اول    1
مروری بر فرایندهای پلیمریزاسیون    1
1-1- مقدمه    2
1-2- تقسیم بندی پلیمرها بر اساس مکانیسم پلیمریزاسیون    3
پلیمریزاسیونهای زنجیرهای    5
پلیمریزاسیونهای مرحلهای    5
فقط مونومرهایی وارد واکنش میشوند که دارای مراکز فعّال (مانند رادیکال آزاد و یا یون) باشند.    5
هردو مونومری که دارای دو عامل فعّال مختلف در دو سرخود باشند قابلیت وارد شدن در واکنش را دارند.    5
غلظت مونومر به طور یکنواخت در طول واکنش کاهش مییابد.    5
مونومرها بسرعت در مراحل اولیّۀ واکنش از بین میروند.    5
پلیمرهایی با وزن مولکولی بالا به سرعت به وجود میآیند.    5
وزن مولکولی زنجیرههای پلیمری همگی با هم به آهستگی در طول زمان افزایش مییابد.    5
سرعت واکنش بسیار زیاد میباشد.    5
سرعت واکنش آهسته و کند است.    5
از ابتدای واکنش، زنجیرههایی با درجه تبدیل بالا بدست میآیند.    5
برای بهدست آوردن زنجیرههایی با درجه تبدیل بالا میبایستی واکنش را تا بیش از90% ادامه داد.    5
واکنش در چند مرحله، شروع، انتشار و اختتام انجام میپذیرد.    5
واکنش فقط در یک مرحله صورت میپذیرد.    5
فقط پلیمرهای خطی یا مولکولهایی با انشعابات کم را تولید میکند.    5
مولکولهایی با ساختار متفاوت، از مولکولهای خطی سادۀ بدون شاخه تا شبکههای حجیم با اتصالات عرضی زیاد به دست میدهد.    5
1-2-1- واکنشهای پلیمریزاسیون رادیکال آزاد    5
1-2-1-1- آغاز    6
1-2-1-2- رشد (انتشار)    6
1-2-1-3- پایان    6
1-2-1-4- انتقال زنجیر    7
1-2-2- طبقه بندی روشها و یا سیستمهای پلیمریزاسیون بر اساس محیط واکنش    7
1-2-2-1- پلیمریزاسیون همگن    8
1-2-2-1-1- روش پلیمریزاسیون تودهای (جرمی) (Bulk Polymerization)    8
1-2-2-1-2- روش پلیمریزاسیون محلولی (Solution Polymerization)    9
1-2-2-2- پلیمریزاسیون ناهمگن    10
1-2-2-2-1- روش پلیمریزاسیون تعلیقی (Suspension Polymerization)    10
1-2-2-2-2- روش پلیمریزاسیون امولسیونی (Emulsion Polymerization)    10
روش پلیمریزاسیون    14
مزایا    14
معایب    14
پلیمریزاسیون    14
تودهای    14
فرآیند ناپیوسته    14
سادگی فرآیند، انعطاف پذیری، هزینۀ پایین جداسازی    14
حرارت زایی واکنش، توزیع وزن مولکولی پهن، افزایش شدید ویسکوزیته و در نتیجه مشکل اختلاط و انتقال حرارت در حین واکنش    14
فرآیند پیوسته    14
قابل کنترل بودن واکنش توسط درجه حرارت، قابل کنترل بودن وزن مولکولی، خواص محصولات و در نتیجه هزینه جداسازی پایین    14
درجه تبدیل پایین، جدایی مونومر از پلیمر، نیاز به درجه حرارت بالا و در برخی مواقع نیاز به فشار بالا، چسبندگی پلیمربه دیواره راکتور    14
پلیمریزاسیون محلولی    14
نسبت به سیستم تودهای ویسکوزیتۀ کمتر و در نتیجه اختلاط و انتقال حرارت بهتر، قابل کنترل بودن واکنش توسط کنترل دما، قابل مصرف بودن مستقیم محلول واکنش، چسبندگی کم پلیمر به بدنه راکتور    14
هزینۀ استفاده از حلّال، آلودگی محیط به علت وجود حلّال، هزینۀ خشکسازی و جدا سازی، مشکل وجود پدیده انتقال رادیکال    14
پلیمریزاسیون تعلیقی    14
قابل کنترل بودن کیفیت محصول و واکنش توسط کنترل دما، قابل مصرف بودن مستقیم دانههای خشک جامد و در نتیجه هزینه پایین جداسازی، ویسکوزیته کم و درنتیجه انتقال حرارت مناسب    14
عدم امکان استفاده از فرآیندهای پیوسته، نیاز به وجود همزن و افزودنیهای خاص، چسبندگی ذرات پلیمری به بدنه راکتور    14
پلیمریزاسیون امولسیونی    14
قابل کنترل بودن واکنش توسط دما، سرعت بالای واکنش، ویسکوزیته کمتر (نسبت به سیستم های محلولی و تودهای)، انتقال حرارت مناسب، قابل مصرف بودن لانکس تولیدی    14
نیاز به غلظت بالای امولسیفایر، نیاز به پایدارسازی ذرات، چسبندگی ذرات به بدنه راکتور    14
1-2-3- اهمیت پلیمریزاسیون امولسیونی    14
1-2-4- مکانیسم پلیمریزاسیون امولسیونی    15
1-2-5- مراحل پلیمریزاسیون امولسیونی    18
1-2-6- مکانیسم ایجاد ذرّه    22
1-2-6-1- هستهزایی مایسلی    22
1-2-6-2- هستهزایی همگن    23
1-2-6-3- هستهزایی قطرهای    23
1-2-7- پلیمریزاسیون امولسیونی بوتادین    24
1-2-8- معرفی مونومر بوتادین    24
1-2-9- مواد مورد استفاده در پلیمریزاسیون امولسیونی بوتادین    27
1-2-9-1- امولسیفایر    27
1-2-9-2- شروع کننده    28
1-2-9-3- بافر    29
1-2-10- مروری بر کارهای انجام شده در زمینۀ شبیه سازی وکنترل توزیع اندازه ذرّات    29
فصل دوم    35
سینتیک پلیمریزاسیون امولسیونی    35
2-1- مقدمه    36
2-2- رخدادهای فاز پیوسته    36
2-3- رخدادهای فاز قطرات مونومری    36
2-4- رخدادهای فاز ذرات پلیمری    37
2-5- مایسلهای متورّم شده با مونومر    38
2-6- مدلسازی    42
2- 6-1- واکنشهای آغازین    42
2-6-2- الیگومرهای فاز آبی    43
2-6-3- هستهزایی    44
2-6-4- موازنۀ منومرها    45
2-6-5- موازنه ماده فعال سطحی    47
2-6-5-1- مدل صفر - یک    48
2-6-5-2- مدل شبه توده    49
2- 6-6- معادلات مدل شبه توده برای موازنه جمعیتی ذرات پلیمری    49
2-6-6-1- تعداد متوسط رادیکالها در ذّرات    50
2-6-6-2- رشد ذرات پلیمری    51
2-6-6-3- ورود الیگومرها به ذرّات    51
2-6-6-4- دفع الیگومرها از ذرّات    52
2-6-6-5- اختتام در داخل ذرّات    52
2-6-7- معادلات مدل صفر-یک برای موازنۀ جمعیتی ذرّات پلیمری    52
2-6-8- حل عددی معادلات موازنه جمعیتی    55
2-6-8-1- المان محدود (Finite Elements)    56
2-6-8-2- حجم/تفاضل محدود    57
فصل سوم    59
محاسبۀ CMC با استفاده از نتایج هدایت سنجی    59
3-1- مقدمه    60
3-2- آزمایش    61
3-3- تأثیرات الکترولیتها بر روی CMC در دمای 25ºC    62
3-4-1- تأثیر تک تک الکترولیتها بر روی CMC در دمای 60ºC    65
3-4-2- تأثیر تلفیق الکترولیتها بر روی CMC    68
فصل چهارم    70
شبیهسازی امولسیونی پلیبوتادین و مقایسه با دادههای تجربی    70
4-1- مقدمه    71
4-2- مدلسازی    73
4-2-1- مقیاس مدلسازی    73
4-2-2- مراحل مدلسازی در واکنشها و فرآیندهای پلیمریزاسیون    74
4-2-3- روشهای انتخاب مدل در واکنشها و فرآیندهای پلیمریزاسیون    75
4-3- مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین    75
4-4- فرضیّات در نظر گرفته شده در طرح سینتیکی ارائه شده برای پلیمریزاسیون امولسیونی بوتادین    76
4-5- حل معادلات حاصل شده در مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین    77
4-5-1- گسسته سازی معادلات دیفرانسیلی جزیی موازنه جمعیتی    78
4-6- پارامترهای استفاده شده در مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین    79
4-7- مقایسۀ نتایج حاصل از مدلسازی سینتیکی با دادههای آزمایشگاهی    81
4-7-1- شرح دستگاه و تجهیزات    81
4-7-2- روش آزمایش    82
4-7-3- خوراک هر آزمایش    84
4-7-4- پلیمریزاسیون با سدیم دودسیل سولفات    84
فصل پنجم    103
پیشبینی هدایت در طول فرایند پلیمریزاسیون    103
5-1- مقدمه    104
5-2- آزمایش    105
5-3- پیشبینی هدایت الکتریکی محلولها بدون واکنش شیمیایی    106
5-3-1 پیشبینی هدایت الکتریکی محلولهای SDS در غلظتهای مختلفی از الکترولیتهای Na2CO3 و KPS در دمای 25ºC و 60ºC    106
5-3-2 پیشبینی هدایت الکتریکی محلولهای SDS در غلظتهای مختلفی از تلفیق الکترولیتهای Na2CO3 و KPS در دمای 60ºC    135
5-4- پیشبینی هدایت الکتریکی واکنش پلیمریزاسیون امولسیونی نانو ذرّات پلیبوتادین (به صورت Online)    146
فصل ششم    148
نتیجه گیری و پیشنهادات    148
6-1 نتیجهگیری    149
6-2- پیشنهادات    150
مراجع    152
پیوستها    158
محاسبه CMC در حضور 5/0 گرم Na2CO3 در محیط با تیتراسیون SDS در دمای 25°C    159
محاسبه CMC در حضور 75/0 گرم KPS در محیط با تیتراسیون SDS در دمای 25°C    160
محاسبه CMC در حضور 5/0 گرم Na2CO3 در محیط با تیتراسیون SDS در دمای 60°C    162
محاسبه CMC در حضور 1 گرمKPS در محیط با تیتراسیون SDS در دمای 60°C    164

 
فهرست جدول ها
جدول 1- 1. اختلافات موجود بین پلیمریزاسیونهای زنجیره ای و مرحله ای    5
جدول 1- 2. مقایسه روشهای پلیمریزاسیون     14
جدول 1- 3. خواص فیزیکی و ترمودینامیکی بوتادین.    26
جدول 1- 4. خوراکهای استفاده شده در پلیمریزاسیون امولسیون بوتادین    27
جدول 1- 5. لیست مقالات انجام گرفته در دهه گذشته براساس مدلهای موازنه جمعیتی .    32
جدول 2- 1. رویدادهای سینتیکی داخل فاز پیوسته (آب)    40
جدول 2- 2. رویداد های سینتیکی داخل فاز ذره پلیمر    41
جدول 2- 3. معادلات سینتیکی پلیمریزاسیون امولسیونی     42
جدول 3- 1. ضرایب به دست آمده برای فرمول (3- 1).    63
جدول 3- 2. مقادیر CMC سدیم دو دسیل سولفات (SDS) برای غلظتهای مختلف الکترویتهای اضافه شده در 25ºC    64
جدول 3- 3. ضرایب به دست آمده برای فرمول (3- 2).    66
جدول 3- 4. مقادیر CMC سدیم دو دسیل سولفات (SDS) برای غلظتهای مختلف الکترویت اضافه شده در دمای60°C    67
جدول 3- 5. اطلاعات کاملی از غلظتهای مختلف تلفیق دو الکترولیت Na2CO3 و KPS، CMC تجربی، CMC به دست آمده از فرمول ارائه شده، و میزان خطای حاصله از این فرمول برای هر کدام از غلظتهای فوق    69
جدول 4- 1. طرح سینتیکی در نظر گرفته شده برای پلیمریزاسیون امولسیونی بوتادین    76
جدول 4- 2. پارامتر¬های استفاده شده درمدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین    79
جدول 4- 3. پارامترهای بدست آمده با استفاده از مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین    80
جدول 4- 4. داده¬ها برای سورفکتانت سدیم دو دسیل سولفات    80
جدول 4- 5. مقادیر مواد استفاده شده در آزمایشات پلیمریزاسیون امولسیونی بوتادین    84
جدول 5- 1. مقادیر هدایت اولیه الکترولیتهایKPS  و  Na2CO3 در دمای الف) 25ºC ب) 60ºCکه دستگاه هدایت¬سنج نشان می¬دهد.    110
جدول 5- 2. ضرایب معادله (5- 7) در دمای الف) 25ºC ب) 60ºC    112
جدول 5- 3. ضرایب هدایت برآورد شده در روش دوّم در الف)ºC 25 ب) 60ºC    114
جدول 5- 4 .ضرایب هدایت Gi و مقادیر هدایت معادل هر یک از گونه¬های یونی (ºλi) برآورد شده در الف) ºC25 ب)60ºC    115
جدول 5- 5. خطای نسبی هدایت اولیه (σo) غلظتهای مختلف الکترولیتهای Na2CO3 و KPS در هر روش الف) 25ºC ب) 60ºC    116
جدول 5- 6. خطای نسبی (σcalc) غلظتهای مختلف الکترولیتهای Na2CO3 و KPS درمحلولهای SDS در هر روش در الف) 25ºC ب) 60ºC    120
جدول 5- 7. خطای نسبی σcalc غلظتهای مختلف الکترولیت با استفاده از مقدارهای دقیق هدایت اولیه نشان داده شده توسط سیستم هدایت¬سنج در الف) 25ºC ب) 60ºC    131
جدول 5- 8. مقادیر هدایت اولیه، σo، غلظتهای مختلفی از تلفیق الکترولیتهای  Na2CO3و KPS در دمای 60ºC    135
جدول 5- 9. مقایسهای بین اعداد پیش¬بینی شده در روش ارائه شده در این تز، با روش دوّم و سوّم برای هدایت اولیه تلفیق دو الکترولیت در دمای 60ºC    137
جدول 5- 10. اعداد پیش-بینی شده با روش ارائه شده در این تز برای هدایت اولیّۀ تلفیق دو الکترولیت در دمای 60ºC    139
جدول 5- 11. خطای نسبی (σcalc) محلولهای SDS با غلظتهای مختلفی از تلفیق دو الکترولیت در هر روش.    140
جدول 5- 12. خطای نسبی σcalc غلظتهای مختلف تلفیق دو الکترولیت، با استفاده از مقدارهای دقیق هدایت اولیّۀ نشان داده شده توسط سیستم هدایت¬سنج در دمای 60ºC    144


فهرست شکل ها
شکل 1- 1. نمایش ساده شده یک سیستم پلیمریزاسیون امولسیونی    18
شکل 1- 2. پلیمریزاسیون امولسیونی در حین مرحله I    19
شکل 1- 3. پلیمریزاسیون امولسیونی در حین مرحله II    20
شکل 1- 4. پلیمریزاسیون امولسیونی در حین مرحله III    21
شکل 1- 5. رفتارهای مختلف سرعت مشاهده شده در پلیمریزاسیون امولسیونی.    21
شکل 1- 6. مراحل پلیمریزاسیون امولسیونی در مکانیسم هسته‌زایی هموژن.    23
شکل 2- 1. حوادث مربوط به هسته گذاری ذرات در فاز پیوسته     39
شکل 2- 2. حوادث مرتبط با فاز پیوسته و فاز ذرّه پلیمری     39
شکل 2- 3. نحوه تبدیل انواع ذرّات به یکدیگر در مدل صفر - یک    53
شکل 3- 1. اندازه گیری¬های هدایت-سنجی برای محلولهای SDS در حضور الف) KPS ب)  Na2CO3در دمای 25ºC    62
شکل 3- 2. تأثیر الکترولیتهای اضافه شده بر روی غلظت بحرانی مایسل (CMC) SDS در دمای 25ºC    63
شکل 3- 3. اندازه گیریهای هدایت-سنجی برای محلولهای SDS در حضور الف) KPS ب)  Na2CO3در دمای 60ºC    65
شکل 3- 4. تأثیر الکترولیت اضافه شده بر روی غلظت بحرانی مایسل (CMC) SDS در دمای 60°C    66
شکل 4- 1. تغییرات کارایی شروع کننده با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    85
شکل 4- 2. تغییرات سرعت هسته¬زایی همگنی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    86
شکل 4- 3. تغییرات غلظت سورفکتانت آزاد در فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    86
شکل 4- 4. تغییرات غلظت مایسل در فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    87
شکل 4- 5. تغییرات هسته زایی مایسلی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    87
شکل 4- 6. تغییرات هسته¬زایی کلی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    88
شکل 4- 7. تغییرات تعداد ذرات پلیمری دارای رادیکال پلیمریک به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    89
شکل 4- 8. تغییرات تعداد ذرات پلیمری بدون رادیکال به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    89
شکل 4- 9. تغییرات تعداد ذرات پلیمری دارای رادیکال مونومریک به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    90
شکل 4- 10. تغییرات تعداد متوسط رادیکالها به ازای ذرات ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    90
شکل 4- 11. تغییرات تعداد کل ذرات به ازای واحد حجم فاز پیوسته   با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    91
شکل 4- 12. تغییرات سطح کل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    91
شکل 4- 13. تغییرات حجم کل ذرات پلیمری به ازای حجم فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    92
شکل 4- 14. تغییرات ضریب نفوذ مونومر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    93
شکل 4- 15. تغییرات ضریب سرعت انتشار نفوذی داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    93
شکل 4- 16. تغییرات غلظت مونومر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    94
شکل 4- 17. تغییرات کسر حجمی پلیمر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    95
شکل 4- 18. تغییرات غلظت مونومر داخل فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    95
شکل 4- 19. تغییرات حجم قطرات مونومری به ازای حجم فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    96
شکل 4- 20. تغییرات غلظت مونومربا زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    97
شکل 4- 21. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، .    97
شکل 4- 22. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، .    98
شکل 4- 23. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، .    98
شکل 4- 24. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    99
شکل 4- 25. تغییرات سرعت پلیمریزاسیون با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    99
شکل 4- 26. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر  .    100
شکل 4- 27. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر  .    101
شکل 4- 28. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر  .    101
شکل 4- 29. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر.    102
شکل 5- 1. پیشبینی مدل و دادههای تجربی هدایت برای تیتراسیون آب مقطر با SDS در دمای الف)25ºC  ب) 60ºC    108
شکل 5- 2. جذب سورفکتانت روی ذرّات پلیمر و تجمع سورفکتانت برای تشکیل مایسل    109
شکل 5- 3. تغییرات هدایت اولیه الکترولیت با غلظت نمک در الف) 25ºC ب) 60°C    113
شکل 5- 4. یکی از بهترین شکلها با حداقل خطای برآورد شده با کلیۀ روشها برای الکترولیتهای KPS و Na2CO3 در دو دمای الف) 25ºC ب) 60ºC    129
شکل 5- 5. یکی از بهترین شکلها با حداقل خطای برآورد شده برای محلولهای SDS با غلظتهای مختلفی از الکترولیتهای KPS و Na2CO3 با استفاده از مقدارهای دقیق هدایت اولیه نشان داده شده توسط سیستم هدایتسنج در الف) 25ºC ب) 60ºC    134
شکل 5- 6. یکی از بهترین شکلها با حداقل خطای برآورد شده در هر روش برای محلولهای SDS با غلظتهای مختلفی از تلفیق الکترولیتهای KPS و Na2CO3    142
شکل 5- 7. یکی از بهترین شکلها با حداقل خطای برآورد شده با هدایت دقیق اولیه برای محلولهای SDS با غلظتهای مختلفی از الکترولیتهای KPS و Na2CO3    145
شکل 5- 8. پیش¬بینی هدایت الکتریکی واکنش پلیمریزاسیون امولسیونی نانو ذرّات پلیبوتادین به صورت Online    146

چکیده
بخش عمده ای از خواص نهایی محصول در پلیمریزاسیون امولسیونی توسط توزیع اندازه ذرّات تعیین می‌-گردد. در این پروژه، یک مدل دقیق بر مبنای معادلات موازنه جمعیتی ( مدل صفر- یک) که دربرگیرندۀ پدیده¬های هسته زایی و رشد ذرّه می‌¬باشد برای پیش¬بینی توزیع اندازه ذرّات انتخاب گردیده است. برای حل معادلات موازنه جمعیتی از روش حجم محدود استفاده شده است. در این مطالعه، اثر پارامتر غلظت اولیه ماده فعال سطحی روی درصد تبدیل و توزیع اندازه ذرّات بصورت تجربی و به کمک شبیه¬سازی بررسی گردیده است. بر اساس نتایج حاصله، با کاهش مقدار ماده فعال سطحی، اندازه ذرّات افزایش می¬‌یابد. در کلیّه موارد فوق، نتایج شبیه¬سازی و تجربی تطابق مطلوبی دارند. در این پروژه، روابط مناسبی برای محاسبۀ تجربی CMC با استفاده از داده¬های آزمایشگاهی به¬صورت y=A Ln(x) + B در دو دمای 25 و 60 درجه سانتیگراد ارائه شد، و نیز در دمای 60 درجه سانتیگراد فرمول تجربی برای تلفیق دو الکترولیت Na2CO3 و KPS که در پلیمریزاسیون امولسیونی نانو ذرات پلی¬بوتادین به¬ترتیب به¬عنوان بافر و شروع¬کننده استفاده می¬شود با روش حداقل مربعات به صورت z=A(x)m(y)n به¬دست آمد که در تمام موارد فوق ضرایب به¬گونه¬ای به¬دست آورده شد که با داده¬های آزمایشگاهی بهترین تطابق را داشته باشد.
 همچنین، هدایت اولیه الکتریکی سیستم بر حسب غلظت یونها، در حضور الکترولیت¬های موجود در پلیمریزاسیون امولسیونی بوتادین در دو دمای 25 و 60 درجۀ سانتیگراد با چهار روش به¬دست آمده است. ابتدا با روش تجربی و با استفاده از داده¬های آزمایشگاهی فرمولی به¬صورت y=A(x) برای هدایت الکترولیت-های فوق در دو دمای 25 و 60 درجه سانتیگراد به¬دست آمده است. سپس دو روش ارائه شده در مقالات بررسی شده است، و در نهایت روشی ابداعی برای محاسبه هدایت الکتریکی محلول¬های فوق ذکر گردیده و درصد خطای هرکدام از روش¬ها به صورت جداولی آورده شده است. در نهایت هدایت الکتریکی سیستم پلیمریزاسیون امولسیونی بوتادین بدون خضور مونومر و نیز به صورت Online در حضور واکنش بدست آمده است. صحّت این روابط از طریق داده¬های آزمایشگاهی مورد تایید قرار گرفت.
کلمات کلیدی: پلیمریزاسیون امولسیونی، بوتادین، توزیع اندازه ذرّات، موازنه جمعیتی، مدلسازی


دانلود با لینک مستقیم


پایان نامه مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی

خواص، کاربردها و روش های سنتز نانو ذرات اکسید تیتانیوم

اختصاصی از نیک فایل خواص، کاربردها و روش های سنتز نانو ذرات اکسید تیتانیوم دانلود با لینک مستقیم و پر سرعت .

خواص، کاربردها و روش های سنتز نانو ذرات اکسید تیتانیوم


خواص، کاربردها و روش های سنتز نانو ذرات اکسید تیتانیوم

 

 

 

 

 

 

تعداد اسلاید : 107

نوع فایل : word

فصل اول: آشنایی با دی اکسید تیتانیوم، معرفی خواص و کاربردهای آن.. 1

1-1- مقدمه. 1

1-2- معرفی انواع ساختارهای کریستالی دی اکسیدتیتانیوم 2

1-2-1- فاز آناتاس... 2

1-2-2- فاز روتایل 3

1-2-3- فاز بروکایت 4

1-2-4- فاز β-TiO2 4

1-3- خواص فیزیکی و شیمیایی TiO2 6

1-3-1- خواص اپتیکی.. 6

1-3-2- خواص الکتریکی.. 7

1-3-3- خواص الکترون و حفره در TiO2 7

1-3-4- خواص شیمیایی.. 8

1-3-5- خاصیت فتوکاتالیستی.. 9

1-3-5-1- مکانیزم واکنش های فتوکاتالیستی در TiO2 12

1-3-6- خاصیت ابرآبدوستی.. 15

1-4- کاربردهای نانومواد دی اکسیدتیتانیوم. 16

1-4-1- کاربردهای ضدمیکروبی، ضدویروسی و ضدقارچ. 16

1-4-2- کاربردهای ضدسرطان.. 18

1-4-3- تصفیه هوا 19

1-4-4- تصفیه آب.. 21

1-4-5- پوشش های خودتمیزشونده 21

1-4-6- مه زدایی.. 22

1-4-7- کاربرد در سلول های خورشیدی حساس شده رنگی.. 23

1-4-8- مصارف دارویی.. 24

1-4-9- کاربردهای دندانپزشکی.. 24

فصل دوم: مروری بر روش های سنتز نانوذرات و لایه های نازک دی اکسیدتیتانیوم.. 27

2-1- روش های سنتز از فاز مایع. 27

2-1-1- روش سل ژل 28

2-1-1-1- روش سل ژل برای تهیه نانوذرات TiO2 28

2-1-1-2- مراحل فرایند سل-ژل.. 30

2-1-2- روش هم رسوبی.. 36

2-1-3- روش سولوترمال.. 36

2-1-4- سنتز نانوذرات به روش هیدروترمال.. 37

2-1-5- روش مایسل معکوس یا میکروامولسیون 38

2-1-6- روش احتراقی 39

2-1-7- روش الکتروشیمیایی 40

2-2- روش های سنتز از فاز گازی.. 41

2-2-1- لایه نشانی بخار شیمیایی (CVD) 41

2-2-2- لایه نشانی بخار فیزیکی (PVD) 45

2-2-3- کندوپاش (Sputtering) 45

2-2-4- روش چگالش از بخار شیمیایی (CVC) 47

2-2-5- روش لایه نشانی اسپری پایرولیزیز (SPD) 48

2-3- مروری بر مقالات بین المللی در زمینه خواص ساختاری و اپتیکی نانوذرات و لایه های نازک اکسید تیتانیوم  49

2-3-1- سنتز نانوذرات  TiO2به روش سل ژل.. 49

2-3-2- سنتز نانوذرات TiO2 در دمای پایین به روش سل-ژل.. 51

2-3-3- سنتز نانوذرات تیتانیا به روس هیدروترمال با امواج فراصوتی.. 53

2-3-4- سنتز نانوپودر تیتانیا به روش CVC.. 54

2-3-5- خواص ساختاری و اپتیکی لایه های نازک اکسیدتیتانیوم به روش اسپری پایرولیزیز. 56

2-3-6- مشخصه یابی لایه های نازک TiO2 تهیه شده به روش کندوپاش (اسپاترینگ) 58

2-3-7- سنتز لایه های نازک TiO2 به روش CVD.. 61

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   63

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 63

3-1-1- نقش عامل کمپلکس ساز 63

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 64

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 67

3-1-2- نقش حلال.. 75

3-1-3- اثر دمای بازپخت... 81

3-1-4- تغییر نسبت آب به آلکوکسید. 85

3-1-5- نوع کاتالیزور 88

3-1-6- اثر pH.. 89

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  92

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 92

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  96

 فصل چهارم:غشاءها و نحوی عکلکرد انها ...............

مراجع. 100

 فهرست جدول­ها

 عنوان و شماره                                                                              صفحه

 جدول1-1: خواص فیزیکی اکسیدتیتانیوم 5

جدول2-1: شرایط فرایند CVD برای رسوب فلزات و نیمرساناها 44

جدول2-2: پارامترهای لایه نشانی با مقادیر بهینه به روش اسپری پایرولیزیز. 57

جدول2-3: تاثیر دمای زیرلایه بر روی خواص لایه های نازک TiO2 سنتز شده به روش اسپری.. 58

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 72

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 73

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 77

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 79

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 85

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 84

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 87

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 94

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 93

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 97

 فهرست شکل­ها

عنوان                                                                                           صفحه

 

شکل 1-1: نمایش ساختار بلوری آناتاس 3

شکل 1-2: نمایش ساختار بلوری روتایل 3

شکل 1-3: نمایش ساختار کریستالی بروکایت 4

شکل 1-۴: نمایش ساختارهای کریستالی  TiO2که در صنعت کاربرد دارند.  :●تیتانیوم :O , اکسیژن.. 6

شکل 1-5 برانگیختگی و بازترکیب الکترون 8

شکل 1-6: (a) بازترکیب سطحی، (b) بازترکیب حجمی، (c) واکنش اکسایش و (d) واکنش کاهش در سطح نیمرسانا 9

شکل ا-7 موقعیت گاف انرژی TiO2 در مقایسه با چند نیمرسانا و پتانسیل اکسایش و کاهش  H2O , H2و O2 در pH=0 . 10

شکل 1-8 سلول فتوولتایی با الکترودهای  TiO2و  Pt 11

شکل 1-9: مقایسه اثر هوندا- فوجی شیما در TiO2 و فتوسنتز گیاهان.. 12

شکل 1-10: میزان نابودی غشاء سلولی باکتری E.coli در اثر تابش پرتو(8 W m-2)   UVبا 18

شکل1-11: اثر واکنش های فتوکاتالیستی TiO2 بر میزان زنده ماندن سلول های سرطانی.. 19

شکل1-12:سامانه تصفیه کنندگی آب با پوششی از  TiO2 22

شکل1-13: عملکرد پوشش های خودتمیزشونده 23

شکل1-14: (a) تصویر شیشه مه گرفته معمولی و (b) شیشه با پوششی از  TiO2بعد از نوردهی UV به اندازه کافی 24

شکل1-15: طرز کار سلول خورشیدی حساس شده رنگی با نانوذرات TiO2 25

شکل2-1: نگاهی به فرایند سل ژل و کاربردهای آن.. 33

شکل2-2: مراحل تولید ژل.. 34

شکل2-3: مراحل فرایند سل-ژل.. 34

شکل2-4: مراحل مختلف تهیه ژل (a) سل (b) ژلتر (c) آئروژل (d) اگزروژل 36

شکل2-5: تشکیل مایسل معکوس... 40

شکل2-6: مراحل فرایند سنتز نانوذرات به روش مایسل معکوس 40

شکل2-7: سنتز  BaFe12O9به روش احتراقی. شعله از چپ به راست در حال انتشار است 41

شکل2-8: محفظه CVD.. 43

شکل2-9: رسوب انتخابی لایه رسوبی.. 45

شکل2-10: مراحل تشکیل لایه نازک در فرایند CVD.. 45

شکل2-11: طرحوارهای از لایه نشانی کندوپاش (سمت چپ) و جداشدن الکترون از هدف، ناشی از بمباران یونی (سمت راست) 47

شکل2-12: طرح شماتیکی از دستگاه سنتز نانودرات به روش CVC.. 48

شکل2-13: طرح شماتیک از دستگاه لایه نشانی و پارامترهای موثر به روش اسپری پایرولیزی.. 50

شکل 2-14: طیف های XRD نانوذرات TiO2 در دماهای بازپخت مختلف به مدت 2 ساعت 51

شکل 2-15: منحنی تغییر اندازه نانوذرات با افزایش دمای بازپخت 51

شکل 2-16: تغییرات اندازه ذرات با افزایش مدت زمان بازپخت در دمای (a) C˚350، (b) C˚500،             (c) C˚1000 52

شکل2-17: طیف پراش پرتو X نانوذرات تیتانیا (a) سنتز شده بدون عملیات پیرسازی (b) ماندگار شده در دمای C˚100به مدت 12 ساعت   53

شکل2-18: تصویر HRTEM پودر TiO2 پیرسازی شده به مدت 12 ساعت در C˚100 53

شکل2-19: طیف UV-Vis نانوپودر تیتانیا پیر شده در دماهای مختلف بازپخت... 54

شکل2-20: تصاویر TEM پودرهای TiO2 تهیه شده به روش هیدروترمال (a) به کمک امواج فراصوتی        (b) معمولی   55

شکل2-21: (a) شماتیکی از محل های جمع آوری ذرات داخل راکتور CVC (b) توزیع دمایی داخل راکتور 56

شکل2-22: طیفهای XRD پودرهای جمع آوری شده در هر منطقه. 56

شکل2-23: طیف های XRD لایه های تهیه شده در دماهای بستر مختلف (a) بدون بازپخت (b) بازپخت شده در دمای C˚500 به مدت 2 ساعت. 58

شکل2-24: طیف عبور اپتیکی لایه های نازک TiO2 در دماهای بستر مختلف... 59

شکل2-25: طیف های پراش پرتو X فیلم TiO2 لایهنشانی شده و بازپخت شده 60

شکل2-26: نمودار گاف اپتیکی (a) مستقیم و (b) غیرمستقیم لایه های تهیه شده به روش RF-Sputtring 61

شکل2-27: (a) ضریب شکست (b) ضریب خاموشی رسم شده برای لایه های تهیه شده به روش اسپاترینگ 61

شکل2-28: طیف پراش پرتو X لایه های TiO2 لایه نشانی شده روی زیرلایه شیشه در دماهای (a) C˚287 (b) C˚306 (c) C˚325 (d) C˚362  62

شکل2-29: تصاویر  SEMاز مقطع عرضی لایههای نشانده شده در دمای (a) C˚ 325 (b)C˚362. 63

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 66

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  66

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، ∆: اتیلن گلیکول.. 67

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 67

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 68

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 70

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 71

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   72

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  73

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 74

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 74

شکل3-12: استیل استن در دو شکل شیمیایی.. 77

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 77

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 78

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 79

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 80

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 80

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 82

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 83

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 85

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 85

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 86

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 87

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 88

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 89

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 89

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 90

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 90

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 92

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 93

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 94

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  94

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 96

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 97

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ............. 98

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 98


دانلود با لینک مستقیم


خواص، کاربردها و روش های سنتز نانو ذرات اکسید تیتانیوم

پایان نامه تهیه و بررسی خواص نانو کامپوزیت پلی اتیلن کلرینه شده/پلی استر عمل شده با پلاسما/نانوکلی جاذب صوت

اختصاصی از نیک فایل پایان نامه تهیه و بررسی خواص نانو کامپوزیت پلی اتیلن کلرینه شده/پلی استر عمل شده با پلاسما/نانوکلی جاذب صوت دانلود با لینک مستقیم و پر سرعت .

پایان نامه تهیه و بررسی خواص نانو کامپوزیت پلی اتیلن کلرینه شده/پلی استر عمل شده با پلاسما/نانوکلی جاذب صوت


پایان نامه تهیه و بررسی خواص نانو کامپوزیت پلی اتیلن کلرینه شده/پلی استر عمل شده با پلاسما/نانوکلی جاذب صوت

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:80

فهرست مطالب:
عنوان                                                                                                                                                          صفحه
فهرست جداول ...........................................................................................................................................................................خ
فهرست شکل-ها...........................................................................................................................................................................د
فهرست علائم اختصاری...............................................................................................................................................................ر
چکیده فارسی..............................................................................................................................................................................ژ
چکیده انگلیسی....................................................................................................................................................................................................س
فصل اول: (مروری بر مقالات و منابع)
1-1- مقدمه    2
1-2- اصول و مبانی صوت ......    3
1-2-1- ماهیت صوت    3
1-2-2- کمیت¬های صوتی    3
1-2-3- ساختمان گوش انسان    5
1-2-3-1-1-1- محدوده شنوایی    5
1-1-1- انواع صوت    5
1-2-4- سرچشمه¬های صوتی    6
1-2-5- تأثیر شرایط محیطی بر صوت    6
1-3- جذب صوت    7
1-3-1- اتلاف انرژی صوت    7
1-3-2- ضریب جذب صوت    7
1-3-2-1-    عوامل مؤثر در ضریب جذب ماده    8
1-3-2-2- روش¬های اندازه¬گیری ضریب جذب صوت    8

1-3-2-2-1-1- روش لوله امپدانس    8
1-3-2-2-2- روش میدان پرانعکاس    12
1-3-2-2-3- روش حالت پایا    12
1-4- انواع مکانیزم جذب صوت    12
1-5- انواع جذب کننده¬های صوتی    13
1-5-1- جذب کننده¬های پوسته¬ای    13
1-5-2- جذب کننده¬های حفره¬ای    13
1-5-3- جذب کننده¬های روزنه¬دار    14
1-5-4- جذب کننده¬های رزونانسی و انواع آن    14
1-5-4-1- جاذب¬های هلمهولتز عادی    14
1-5-4-2- جاذب¬های ریز سوراخ    15
1-5-4-3- بلوک بنایی    15
1-5-5- جذب کننده¬های الیافی یا متخلخل و انواع آن    16
1-5-5-1- پشم معدنی    16
1-5-5-2- فوم    17
1-5-5-3- پلاستر آکوستیکی    17
1-5-5-4-    کاستون    18
1-5-5-5-    آیروژل    18
1-5-5-6- کامپوزیت¬ها    18
1-5-5-6-1- مشخصات کامپوزیت¬ها    19
1-5-5-6-2- طبقه¬بندی کامپوزیت¬ها    20

1-5-5-6-2-1- کامپوزیت¬های ذره¬ای    20
1-5-5-6-2-2- کامپوزیت¬های لیفی    22
1-6- تاریخچه¬ی جاذب صوتها    22
1-7- آشنایی با فناوری نانو    24
1-7-1- نانو ذرات    26
1-7-2- نانوکامپوزیت¬ها    26
1-7-2-1-    پلی¬استر    27
1-7-2-2- پلی¬اتیلن کلرینه شده    28
1-7-2-2-1- واکنش¬های مختلف تبدیل شدن پلی¬اتیلن به CPE    29
1-7-2-3-    نانوکلی    29
1-8- عمل پلاسما    30
1-8-1- شیمی پلاسما    31
1-8-1-1- اجزای اصلی    31
1-8-1-2- برخورد اجزاء پلاسما    33
1-8-1-3- برخورد پلاسما و سطح    34
1-8-1-4- واکنش¬های اتم، مولکول و سطح    34
1-8-1-4-1- جذب    35
1-8-1-4-2- پراکنش    35
1-8-2- انواع پلاسما    36
1-8-2-1- پلاسمای گرم    36
1-8-2-2- پلاسمای سرد ................    36

1-9- هدف از پروژه    39
    فصل دوم: (تجربیات)
2-1- مقدمه    41
2-2- مواد و تجهیزات    41
2-2-1- مواد اولیه    41
2-2-2- تجهیزات مورد نیاز    41
2-3- روش کار    42
2-3-1- آماده¬سازی الیاف پلی¬استر    42
2-3-2- تهیه نانوکامپوزیت پلی¬اتیلن کلرینه/پلی¬استر عمل شده با پلاسما/نانو کلی    43
2-4- آنالیزهای انجام شده    44
2-4-1- اندازه¬گیری جذب صوت به روش لوله امپدانس    44
2-5- بررسی گونه شناسی    45
2-5-1- آنالیز میکروسکوپی الکترونی پویشی ((SEM    45
    فصل سوم: (نتایج و بحث)
3-1- مقدمه ...........    47
3-2- بررسی اثر پلاسما بر روی الیاف پلی¬استر ....    47
3-2-1- تصاویر SEM الیاف پلی¬استر عمل شده با پلاسما تحت فشارها و زمان¬های مختلف    48
3-3- بررسی رفتار جذب صوت نانو کامپوزیت    49
3-3-1-     بررسی اثر تغییر پارامترهای پلاسما روی  الیاف پلی¬استر، بر ضریب جذب صوت نانوکامپوزیت پلی¬اتیلن کلرینه شده/پلی¬استر عمل شده با پلاسما/نانوکلی    49
3-3-2- بررسی اثر تغییر درصد الیاف پلی¬استر عمل شده با پلاسما بر ضریب جذب صوت نانوکامپوزیت پلی¬اتیلن کلرینه  
شده/پلی¬استر عمل شده با پلاسما/نانوکلی ........................................................................................................................................54
3-3-3- بررسی اثر تغییر ضخامت بر ضریب جذب صوت نانوکامپوزیت پلی¬اتیلن کلرینه/ پلی¬استر عمل شده با پلاسما/ نانوکلی .......................................................................................................................................................................................................56
3-4- گونه شناسی سطح نانوکامپوزیت پلی¬اتیلن کلرینه شده/ پلی¬استر عمل شده با پلاسما/ نانوکلی     57
3-4-1-    تصویر SEM نانوکامپوزیت پلی¬اتیلن کلرینه شده/ پلی¬استر عمل شده با پلاسما/ نانوکلی    57
3-5- نتیجه گیری نهایی    58
3-6-پیشنهادات ..................    59
مراجع......................................................................................................................................................................................................................60
 
فهرست جداول
عنوان                                                                                                                                                                           صفحه

جدول (1-1) سرعت صدا در مواد مختلف ......................................................................................................................................................4
جدول (1-2) مشخصه¬های انرژی برای چند اتم و مولکول .......................................................................................................................32
جدول (2-1) ویژگی¬های پلی¬اتیلن کلرینه شده ...........................................................................................................................................41
جدول (2-2) ویژگی¬های نانوکلی.....................................................................................................................................................................41
جدول (2-3) شرایط عمل پلاسما بر روی الیاف پلی-استر...........................................................................................................................42
جدول (2-4) شرایط تولید نانوکامپوزیت¬ها¬ی پلی¬اتیلن کلرینه/ پلی¬استر عمل شده با پلاسما/ نانوکلی...........................................43

فهرست شکل ها
   عنوان                                                                                                                                                 صفحه
شکل (1-1) برخورد یک پرتو صدا با سطح ماده ...........................................................................................................................................6   
شکل (1-2) نمونه¬ای از جاذب هلمهولتز .......................................................................................................................................................15
شکل (1-3) نمونه¬ای از جاذب ریز¬سوراخ .....................................................................................................................................................15
شکل (1-4) نمونه¬ای از بلوک شیاردار بنایی..................................................................................................................................................16
شکل (1-5) نمونه¬ای از پشم معدنی................................................................................................................................................................17
شکل (1-6) نمونه¬ای از آیروژل.........................................................................................................................................................................18
شکل (1-7) واکنش کلریناسیون پلی-اتیلن.....................................................................................................................................................28
شکل (1-8) دانسیته¬ها و دماها یا انرژی¬هایی برای انواع اجزای اصلی در یک پلاسمای معمولی تحت فشار کم .........................32
شکل (2-1) دستگاه اندازه¬گیری صوت لوله امپدانس .................................................................................................................................45
شکل (3-1) تصاویر SEM الیاف پلی¬استر: a) الیاف پلی¬استر بون عمل پلاسما، b) فشارmbar15/0، زمان min1، c) فشارmbar15/0، زمان min5/2 d) فشارmbar15/0، زمان min5، e) فشارmbar25/0، زمان min1، f) فشارmbar25/0، زمان min5/2،g ) فشارmbar25/0، زمان min5، h) فشارmbar35/0، زمان min1، i) فشارmbar35/0، زمان min 5/2 j) فشارmbar35/0،min 5..............................................................................................................................................................................48
شکل (3-2) منحنی ضریب جذب صوت پلی¬اتیلن کلرینه شده................................................................................................................50
شکل (3-3) منحنی ضریب جذب نمونه¬های حاوی %10 الیاف پلی¬استر(a): حاوی%0 نانوکلی (b): حاوی %5/0نانوکلی و (c): حاوی %1 نانوکلی.................................................................................................................................................................................................51
شکل (3-4) منحنی ضریب جذب نمونه¬های حاوی %20 الیاف پلی¬استر(a): حاوی%5/0 نانوکلی (b): حاوی %1نانوکلی و (c): حاوی %0 نانوکلی.................................................................................................................................................................................................52

شکل (3-5) منحنی ضریب جذب نمونه¬های حاوی %30 الیاف پلی¬استر(a): حاوی %1نانوکلی (b)حاوی %0 نانوکلی (c): حاوی  نانوکلی:%5/0..........................................................................................................................................................................................................52

 


شکل (3-6) منحنی ضریب جذب نمونه¬های حاوی %40 الیاف پلی¬استر(a): حاوی0% نانوکلی (b): حاوی %5/0نانوکلی و (c): حاوی 1% نانوکلی.................................................................................................................................................................................................53
شکل (3-7) منحنی ضریب جذب نمونه¬های حاوی %50 الیاف پلی¬استر(a): حاوی%5/0 نانوکلی (b): حاوی %1 نانوکلی و (c): حاوی %0نانوکلی...................................................................................................................................................................................................53
شکل (3-8) منحنی ضریب جذب نمونه¬های حاوی %60 الیاف پلی¬استر(a): حاوی%1نانوکلی (b): حاوی %0نانوکلی و (c): حاوی %5/0نانوکلی...............................................................................................................................................................................................54
شکل (3-9) منحنی مقایسه  ضریب جذب صوت  نمونه¬های(a): حاوی%0 الیاف پلی¬استر (b): حاوی %10 الیاف پلی¬استر (c): حاوی %20 الیاف پلی¬استر (d): حاوی %30 الیاف پلی¬استر (e) حاوی %40 الیاف پلی¬استر (f): حاوی %50 الیاف پلی¬استر (g): حاوی %60 الیاف پلی-استر.................................................................................................................................................................................55
شکل (3-10) منحنی مقایسه ضخامت الیاف پلی¬استر(a): mm2 (b): mm 3 (c): mm4............................................................57

شکل (3-11) تصویر SEM نانوکامپوزیت پلی¬اتیلن کلرینه شده/ پلی¬استر عمل شده با پلاسما/ نانوکلی......................................57

علائم اختصاری
پلی ¬اتیلن کلرینه شده                                                                                                                       CPE  
           
پلی اتیلن ترفتالات                                                                                                                           PET
 پلی وینیل الکل                                                                                                                              PVA     
پلی آکریلونیتریل                                                                                                                          PAN   
اسید کلریک                            HCL                                                                                                    
اشعه فرابنفش UV                                                                                                                               
میکروسکوپ الکترونی پویشی                                                                                                  SEM                         
هرتز (واحد فرکانس)                                                                                                                    Hz              
نانومتر (واحد اندازه گیری ذرات وطول موج جذبی)                                                                                       nm
                                                                                              
متر بر ثانیه                                                                                                                           m⁄(s       )                                                                                                                                        
طول موج                                                                                                                                             λ                                                                                
                                                                                                                                                                                                                 پاسکال (واحد فشار)                                                                                     Pa                                       

وات (واحد توان)                                                                                             W                                    
        
ولت (واحد ولتاژ)                                                           V                                                                                                                                                                                                             آمپر (واحد جریان)                                       A                                                                                                                                          
وات بر متر مربع (واحد شدت)                                                                                                           W⁄m^2                                                                                                                
درجه¬ی سانتی¬گراد (واحد دما)                                                                                                                 ℃
سانتی¬متر (واحد ضخامت)                                                                                                                    cm
دسی تکس (واحد ظرافت الیاف)                                                                                                            dtex        
درصد وزنی   %Wt                                                                                                                              

میلی متر(واحد طول)                                                                                           mm                               

میکرو متر (واحد اندازه ذرات)                                                                                        μm                                      
گرم                                                                                                                         g                         

دقیقه                                                                                                                 min                            
گرم بر سی سی (واحد دانسیته)                                                                                                           g⁄cc

میلی بار(واحد فشار)                                                                                                                  mbar        
میلی متر جیوه(واحد فشار)                                                                                                   mmHg           
فشار صوتی ورودی                                                                                                                                P_i

فشار صوتی بازتابی                                                                                                                                P_r     

سرعت صوت در لوله                                                                                                      c                          
ضریب جذب                                                                                                                                        α
                
امپدانس آکوستیکی                                                                                                                              Z_A

ضریب بازتاب                                                                                                    R                                  
                                       
فاز                                                                                                                                                     ∆

سرعت مؤثر ذرات ورودی                                                                                                                        v_i

سرعت مؤثر ذرات بازتابی                                                                                                                      v_i         

                                                                                                                                                                                                                                                                                                             
                                                                                                                                                      
چکیده

سر و صدا، به عنوان صدای ناخواسته تعریف شده است که یکی از مهمترین عوامل زیان آور محیط زیست است. تلاش¬های زیادی برای به کارگیری روش¬های مؤثر کاهش آلودگی صوتی، صورت گرفته است. استفاده از مواد جاذب صوت به عنوان یکی از مؤثرترین راهها برای کنترل صدای ناشی از بازتابش سطوح می¬باشد. الیاف یکی از مناسبترین مواد برای کاربرد در جاذب-های صدا می¬باشد. در این تحقیق، نانوکامپوزیت¬های جاذب صوت پلی¬اتیلن کلرینه شده (CPE)/ الیاف پلی¬استر عمل شده با پلاسما/ نانوکلی، به عنوان جاذب صوت در نسبت¬های مختلف، تهیه شد. برای این منظور ابتدا الیاف پلی¬استر به وسیله عملیات پلاسما با تأثیر پارامترهای  مختلف عملیات، زمان عملیات و فشار پلاسما آماده شد. سپس نانوکامپوزیت پلی¬اتیلن کلرینه شده/پلی¬استر عمل شده با پلاسما/نانوکلی با نسبت¬های مختلف پلی¬استر عمل شده با پلاسما (10،20،30،40،50،60) و درصدهای مختلف نانوکلی(0،5/0،1) به روش ساده مخلوط کن داخلی و پرس پخت تهیه و مورد ارزیابی قرار گرفتند. ساختار نانوکامپوزیت و الیاف پلی¬استر عمل شده با پلاسما با استفاده از میکروسکوپ الکترونی پویشی (SEM) مورد بررسی قرار گرفت. ویژگی جذب صوت نانوکامپوزیت در یک لوله امپدانس تست شد. اثر ظرفیت الیاف، ضخامت نانوکامپوزیت روی ویژگی¬های جذب صوت بررسی شد. نتایج نشان داد که خصوصیات صوتی مواد متخلخل به اختلاط با پلی¬استر عمل شده با پلاسما بستگی دارد. جذب صوت مواد با افزایش مقدار پلی¬استر عمل شده با پلاسما/ نانوکلی به مقدار قابل توجهی افزایش یافت. علاوه بر¬این، ویژگی¬های آکوستیک نانوکامپوزیت با ظرفیت %60 پلی¬استر عمل شده با پلاسما/نانوکلی در محدوده فرکانس بالا Hz3500 یک اوج ضریب جذب صوت 89/0را نشان داد.
کلمات کلیدی: پلی¬اتیلن کلرینه شده، پلی¬استر، پلاسما، نانوکلی، جذب صوت


دانلود با لینک مستقیم


پایان نامه تهیه و بررسی خواص نانو کامپوزیت پلی اتیلن کلرینه شده/پلی استر عمل شده با پلاسما/نانوکلی جاذب صوت

پایان نامه فناوری نانو یا نانو تکنولوژی

اختصاصی از نیک فایل پایان نامه فناوری نانو یا نانو تکنولوژی دانلود با لینک مستقیم و پر سرعت .

پایان نامه فناوری نانو یا نانو تکنولوژی


پایان نامه  فناوری نانو یا نانو تکنولوژی

نوع فایل : Word

تعداد صفحات : 171 صفحه

 

چکیده :

نانوتکنولوژی تولید کارآمد مواد و دستگاهها و سیستمها با کنترل ماده در مقیاس طولی نانومتر، و بهره برداری از خواص و پدیده های نوظهوری است که در مقیاس نانو توسعه یافته اند فناوری نانو کاربردهای گسترده‌ای در دانش‌های گوناگون دارد که از موردهای مهم آن می‌توان به کاربردهایش در پزشکی برای ساخت داروهای بدون اثرهای جانبی اشاره کرد که تنها بر یک بافت ویژه تأثیر می‌گذارند. از انواع کاربرد ها می‌توان در ساخت نانو جوراب ها ، نانو لوله‌های کربنی و … اشاره کرد. یک نانومتر یک میلیاردم متر است. این مقدار حدودا چهار برابر قطر یک اتم است. مکعبی با ابعاد 2.5 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین آی سیهای امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم ، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازه‌ای حدود 10 نانومتر ، هزار برابر کوچکتر از قطر یک موی انسان است.  امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن، برنده جایزه نوبل فیزیک مطرح شد. فاینمن طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیزها را رد نمی‌کند. وی اظهار داشت که می‌توان با استفاده از ماشینهای کوچک ماشینهایی به مراتب کوچکتر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد . همین عبارتهای افسانه وار فاینمن راهگشای یکی از جذابترین زمینه‌های نانو تکنولوژی یعنی ساخت روباتهایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانو ماشینهایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکــــزی هستند، هر دانشمندی را به وجد می‌آورد. در رویای دانشمندانی مثل جی استورس هال و اریک درکسلر این روباتها یا ماشینهای مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی در می‌آیند. شاید در آینده‌ای نه چندان دور بتوان به کمک اجرای برنامه ای در کامپیوتر ، تخت خوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.

 

فهرست :

فصل اول: نانوتکنولوژی چیست؟

فصل دوم: خواص و کاربرد پایدار در فناوری نانو

فصل سوم: روشهای ساخت و مدلسازی عناصر پایه در فناوری نانو

فصل چهارم: کاربردهای فناوری نانو


دانلود با لینک مستقیم


پایان نامه اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی

اختصاصی از نیک فایل پایان نامه اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی دانلود با لینک مستقیم و پر سرعت .

پایان نامه اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی


پایان نامه اصلاح الکترود خمیرکربن با نانو ذرات SiO2  و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:94

پایان نامه ی دوره کارشناسی ارشد در رشته شیمی تجزیه

عنوان : اصلاح الکترود خمیرکربن با نانو ذرات SiO2  و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم کنش ساختار DNA -i-motif با تاموکسیفن و اندازه گیری الکتروشیمیایی آن

فهرست مطالب:
عنوان                                                                                                            صفحه
فصل اول: مقدمه
مقدمه    2
فصل دوم: تئوری    
2-1- الکترودهای اصلاح شده شیمیایی    11
2-2- حسگرها    13
2-3- حسگرهای الکتروشیمیایی    13
2-4- زیست حسگرها    15
2-5- زیست حسگرهای الکتروشیمیایی DNA    16
2-6- ساختار مولکول DNA    18
2-6-1- DNA سه ¬رشته¬ای    23
2-6-2-  DNA چهار رشته¬ای    24
2-6-2-الف- G-DNA    24
2-6-2- ب- i-motif    25
2-7- کاوشگرها و تثبیت آن¬ها بر سطح مبدل    26
2-7-1- تثبیت DNA کاوشگر از طریق جذب سطحی    26
2-7-1-1 جذب سطحی فیزیکی    27
2-7-1-2- جذب سطحی در پتانسیل کنترل شده    27
2-7-1-3-تثبیت DNA بوسیله اتصال کوالانسی    27
2-8- انواع برهم¬کنش میان نشانگرها و DNA    28
2-8-1- برهم¬کنش الکترواستاتیک    28    
عنوان                                                                                                                          صفحه
2-8-2- برهم¬کنش درون رشته¬ای    28
2-8-3- برهم¬کنش با شیار    28  
2-9- تلومر    29
2-10-  آنزیم تلومراز    29
فصل سوم: بخش تجربی
3-1-مواد شیمیایی مورد نیاز    32
3-2-وسایل و تجهیزات    34
3-3- الکترودهای مورد استفاده    35
3-4-تهیه الکترودهای کار    35
3-4-1- تهیه¬ی الکترود خمیر کربن برهنه (CPE)    35
3-4-2- تهیه الکترود خمیر کربن اصلاح شده با نانوذرات  2 SiO و –L سیستئین / L -Cys) 2NSiO)    36
3-5- بافرهای مورد استفاده برای تثبیت pH     37
3-6- تهیه محلول¬ها    38
3-7- مشخصه¬یابی سطح الکترود    38
فصل چهارم: اصلاح الکترود خمیر کربن با نانو ذرات 2 SiO و کاربرد آن برای تعیین الکتروشیمایی داروی تاموکسیفن سیترات
4-1- مطالعه ولتامتری چرخه¬ای الکترودهای کار    41
4-2- مطالعه اسپکتروسکوپی امپدانس الکتروشیمیایی    42
4 -3- اثر pH محلول بافر به رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO     44
4-4- بررسی رفتار الکتروشیمیایی محلول تاموکسیفن سیترات در سطح الکترودهای خمیر کربن اصلاح شده با نانو ذرات
عنوان                                                                                                                          صفحه
2 SiO    .....................................................................................45
4-5- اثر سرعت روبش پتانسیل بر رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO     46
4-6- تعیین محدوده خطی غلظتی تاموکسیفن سیترات و حد تشخیص روش    48
4-7- اندازه¬گیری تاموکسیفن سیترات در نمونه¬ حقیقی به کمک روش پیشنهادی    50
فصل پنجم: اصلاح الکترود خمیر کربن با نانو ذرات  /L-Cys 2 SiO و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم¬کنش ساختار DNA¬-i-motif باتاموکسیفن
5-1- کلیات    53
5-2- اهمیت ساختار i-motif DNA    53
5-3- ویژگی¬های CPE/2NSiO / i-Motif DNA    56
5-3-2- مطالعه ولتامتری چرخه¬ای چگونگی تثبیت DNA بر روی سطح الکترود اصلاح شده    58
5-4 –مطالعه رفتار الکتروشیمیایی تاموکسیفن در سطح زیست حسگر الکتروشیمیایی    59
5-4-1- ولتامتری چرخه¬ای    59
5-4-2- ولتامتری موج مربعی    61
5-5 - اثر pH  بر رفتار الکتروشیمیایی تاموکسیفن در سطح    63
5-6- بررسی طیف سنجی CD    65   
5-7- نتیجه¬گیری     67
نتیجه¬گیری نهایی    68
پیشنهادات برای کارهای آینده    69
مراجع    70
چکیده انگلیسی

 

فهرست  شکل ها
عنوان                                                                                                                          صفحه
شکل 2-1- ساختار یک حسگر الکتروشیمیایی نوعی    15
شکل 2-2- مراحل تشخیص DNA    17
شکل 2-3- شمایی از یک کروموزوم و زنجیر دورشته¬ای DNA موجود در داخل کروموزوم و همچنین بازشدة قسمتی از DNA با نشان دادن پیوند فسفودی استر بین دو قند پنتوز و همچنین پیوند هیدروژنی بین بازهای آلی در ساختار  دورشته‌ای)  DNA.    21
شکل2-4- ساختارهای متفاوت DNA     22
شکل2-5- ساختار چهار رشته¬ای G-quderplux    25
شکل2-6- ساختار چهار رشته¬ای  i-motif  DNA-    26
شکل 3-1-الف) فرمول ساختاری و برخی از ویژگی¬های تاموکسیفن سیترات و ب) ساختار L- سیستئین    33
شکل ۳-2- (الف) دستگاه پتانسیواستات / گالوانواستات اتولب و (ب) سل آزمایشگاهی    35  

شکل3- 3- نمایش نموداری از تهیه الکترود خمیر کربن اصلاح شده    37

شکل4-1- ولتاموگرام¬های چرخه¬ای محلول -4/-3[6(CN)[Fe  M 01/0 دارای NaCl  M 1/0 در سطح (a) CPE   و(b) /CPE 2SiO در سرعت روبش 1-s mV 50    41

شکل 4-2- نمودار نایکویست مربوط به الکترود خمیر کربن برهنه (a) و الکترود خمیر کربن اصلاح شده با نانو ذرات 2SiO (b) در محلول M  01/0 از زوج اکسنده/کاهنده ]6(CN)[Fe4K/]6(CN)[Fe3 Kحاوی NaCl M  1/0 با سرعت روبش 1-s mV 100    43
شکل 4-3- اکسایش برگشت ناپذیر تاموکسیفن سیترات    44
شکل 4-4- نمودار شدت جریان دماغه اکسایش M 5-10 تاموکسیفن سیترات در سطح CPE/ 2SiO بر حسب pH محلول بافر فسفات M 1/0     45
عنوان                                                                                                                          صفحه
شکل 4-5- ولتاموگرام¬های چرخه¬ای الکترود خمیر کربن برهنه (a) و خمیر کربن اصلاح شده با نانو ذرات 2SiO (b) در محلول بافر فسفاتM  1/0 با 5/4 pH= دارایM  1/0 NaCl در سرعت روبش پتانسیل 1-s mV 50. (c) نظیر (a) و (d) نظیر (b) در حضور M 5-10 از تاموکسیفن سیترات    46
شکل 4-6- الف) ولتاموگرام¬های چرخه¬ای محلول  M  5-10 از تاموکسیفن سیترات در محلول بافر فسفات M 1/0 با  5/4PH=  دارای M 1/0   NaCl در سرعت¬های روبش پتانسیل مختلف: a) 25 ،b ) 50،c ) 100،d ) 150،      e ) 200،f ) 300،g ) 400 میلی ولت بر ثانیه در سطح الکترود خمیر کربن اصلاح شده با نانو ذرات 2SiO .        ب) تغییرات بر حسب سرعت روبش پتانسیل (نتایج از ولتاموگرام¬های چرخه¬ای (الف) بدست آمده¬اند)    47

شکل 4-7- الف) ولتاموگرامهای پالس تفاضلی تاموکسیفن با غلظتهای مختلف (a) 8-10 ×3 ، (b) 8-10 ×7 ،
(c) 7-10، (d) 7-10 ×3،  (e) 7-10 ×5، (d) 7-10 ×7، (f) mol L-1  6-10 درمحلول بافر فسفات 5/4PH= واجدM NaCl  1/0 در سطح /CPE 2NSiO 1-s mV 100 = .υ ب) نمودار تغییرات جریان دماغه آندی بر حسب غلظت تاموکسیفن    49
شکل4-8- نمودار شدت جریان دماغه اکسایش تاموکسیفن سیترات بر حسب غلظت تاموکسیفن    50
شکل 5-1- تصویر نموداری از مراحل تهیه زیست حسگر الکتروشیمیایی i-motif DNA    55
شکل 5-2- تصاویر SEM سطح (الف) CPE برهنه پس از پیش¬تیمار الکتروشیمیایی، (ب) CPE/Cys-2NSiO، (ج) CPE/2NSiO/ i-Motif DNAو (د) CPE/Cys-2NSiO/i-Motif DNA    57
شکل5-3- ولتاموگرام¬های چرخه¬ای محلول-4/-3 [6(CN)[Fe  M 01/0 دارای M NaCl 1/0 در بافر فسفات  M1/0 با 5/4 pH= در سطح (a)  CPE (b)  CPE/2NSiO، (c)  CPE/ 2 NSiO/ i-Motif   DNA و (d)  CPE/ Cys- 2 NSiO/i-Motif DNA  در سرعت روبش 1-s mV 50     59
شکل5-4- ولتاموگرام چرخه¬ای M 5-10 داروی تاموکسیفن در محلولM  1/0 بافر فسفات با 5/4 pH= دارای M 1/0 NaCl در سطحCPE (a) ، (b) CPE/ Cys- 2 NSiO، (c) CPE/Cys-2 NSiO/i-Motif DNA در سرعت روبش پتانسیل 1-s mV 50    60
عنوان                                                                                                                       صفحه
شکل5-5- ولتاموگرام موج مربعی CPE/Cys- 2 NSiO/i-motif DNA، در حضور غظت¬های فزاینده¬ایی از تاموکسیفن:(a) 8-10×7، (b) 7-10، (c) 7-10×5، (d) 7-10×7،  (e)  6-10، (f)  6-10 ×5، (g) 6-10 × 7، (h) M  5-10،  در محلول بافر فسفات 5/4 pH= دارای M 1/0 NaCl . الف) ضمیمه ولتاموگرام¬های موج مربعی:
(c , NSiO2-Cys/CPE (b ,CPE (a CPE/Cys-2 NSiO/i-motif DNA در غیاب تاموکسیفن. ب) نمودار تغییرات شدت جریان اکسایش تاموکسیفن بر حسب تغییرات غلظت آن    ..............................................................................62
شکل5-6-الف) ولتاموگرام موج مربعی محلول تاموکسیفن با غلظت (a)M  4-10 و (b)  M5-10 در بافر فسفات
5/4 pH= در سطح CPE/Cys- 2 NSiO/i-motif DNA، (c) نظیر (a) و (d) نظیر (b) در بافر فسفات
 M1/0 با0/7 pH=    63

شکل 5-6- ب) ولتاموگرام موج مربعی محلول تاموکسیفن با غلظت (a)M  4-10 و (b)  M5-10 در محلول بافر فسفات M 1/0 با 5/4 pH= در سطح CPE/Cys- 2 NSiO/dsDNA، (c) نظیر (a) و (d) نظیر (b) در محلول بافر فسفات M 1/0 با0/7 pH=      64

شکل 5-7) طیف بینی  CD محلول بافر فسفات  M1/0 با a) 5/4 pH= و b) 0/7 pH= دارای µM i-motif DNA0/1...66


فهرست جدول ها
عنوان                                                                                                                            صفحه
جدول3-1- موادشیمیایی مورد استفاده در این کار تحقیقاتی    32
جدول4-1- نتایج حاصل از روش پیشنهادی در تعیین غلظت تاموکسیفن در نمونه پلاسما3 n=    51

چکیده

تلومرها کمپلکس¬هایی متشکل از DNA و پروتئین می¬باشند که نقش مهمی را در جهش¬های ژنی و ایجاد سرطان دارند. آنزیم تلومراز، طول کروموزوم را از طریق سنتز تلومرها افزایش داده و در حدود 85% از سرطان¬ها فعال است. در انتهای تلومرها یک دو رشته¬ای DNA با توالی (5-TTAGGG):(5-CCCTAA) وجود دارد. رشته غنی از سیتوزین قادر است ساختار i-motif DNA را تشکیل دهد. مطالعات نشان داده است که با پایدار کردن این ساختار می¬توان از تشکیل ساختار دو رشته¬ای و در نتیجه طویل شدن طول تلومرها جلوگیری کرد. داروی تاموکسیفن یک عامل هورمونی ضد استروژن برای درمان سرطان سینه می-باشد که برای مدت زیادی به منظور درمان سرطان سینه به کار می¬رود. در این تحقیق در مرحله اول امکان اندازه¬گیری الکتروشیمیایی داروی تاموکسیفن سیترات در سطح الکترود خمیر کربن اصلاح شده با  نانو ذرات 2SiO به کمک ولتامتری پالس تفاضلی و ولتامتری چرخه¬ای مورد مطالعه قرار گرفت و سنجش مقدار تاموکسیفن در نمونه حقیقی به کمک روش افزایش استاندارد صورت پذیرفت. در مرحله دوم، با طراحی زیست حسگرهایی بر مبنای ساختار i-motif، برهمکنش این ساختار با داروی ضد سرطان تاموکسیفن سیترات، مورد بررسی قرار گرفت. زیست¬حسگر الکتروشیمیایی از طریق اصلاح الکترود خمیر کربن (CPE) با نانوذرات 2 SiOو –L سیستئین  سپس تثبیت ساختار i-motif DNA  بر روی سطح تهیه شد و برای بررسی برهم¬کنش این ساختار با داروی تاموکسیفن به کار گرفته شد. پایداری ساختار i-motif ، یک استراتژی خوب برای درمان سرطان است، چون می¬تواند از واکنش تلومراز در سلول سرطانی جلوگیری کند. برهم¬کنش بینi-motif   DNAو دارو تاموکسیفن، در بافر فسفات M 1/0(PBS)  و محلول3[Fe (CN)6]-  از طریق ولتامتری چرخه¬ای (CV) و روش ولتامتری موج مربعی (SWV) مورد مطالعه قرار گرفت. دماغه اکسایشی تاموکسیفن بعد از تثبیتDNA i-motif  روی سطح الکترود به دلیل برهم¬کنشDNA i-motif  و تاموکسیفن مشاهده شد و با افزایش غلظت داروی تاموکسیفن، سیگنال افزایش می¬یابد. از روش طیف¬بینی دورنگ نمایی دورانی (CD) برای بدست آوردن اطلاعاتی در مورد نحوه شکل¬گیری ساختار و برهم¬کنش لیگاند با این ساختار مورد بررسی قرار گرفت و نتایج نشان داد که این ساختار در pH حدود 5/4 ساخته شده، ولی پایداری آن با افزایشpH  محیط کاهش می¬یابد. حد تشخیص کاوشگر تثبیت شده بر سطح الکترود خمیر کربن اصلاح شده بر مبنای سه برابر انحراف استاندارد برابرm μ 06/0 تعیین ¬شد.

واژگان کلیدی: زیست حسگر الکتروشیمیایی DNA ، تاموکسیفن، سلول¬های سرطانی، ساختار i-motif DNA


دانلود با لینک مستقیم