نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

استفاده از پلیمر فرا جاذب آبPR 3005 A جهت موفقیت برنامه های آبیاری در مناطق خشک و نیمه خشک

اختصاصی از نیک فایل استفاده از پلیمر فرا جاذب آبPR 3005 A جهت موفقیت برنامه های آبیاری در مناطق خشک و نیمه خشک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

استفاده از پلیمر فرا جاذب آبPR 3005 A جهت موفقیت برنامه های آبیاری در مناطق خشک و نیمه خشک

چکیده

پلیمرهای فرا جاذب آب (Water Superabsorbent) می توانند مقادیر زیادی آب یا محلول آبی را جذب نموده و متورم شوند. این مخازن ذخیره ای کوچک وقتی که در داخل خاک قرار می گیرند، آب حاصل از آبیاری و بارندگی را به خود جذب نموده و از فرو نشت آن جلوگیری می نماید. پس از عمل جذب و در اثر خشک شدن محیط آب داخل پلیمر به تدریج تخلیه می گردد و بدین ترتیب خاک به مدت طولانی و بدون نیاز به آبیاری مجدد مرطوب می ماند. بررسی خواص پلیمرهای فرا جاذب آب در شرایط مشابه درون خاک مطمئن ترین روش برای درک و پیش بینی رفتار آنها در سیستمهای واقعی آب، خاک و گیاه می باشد.

یکی از این پلیمرهای فرا جاذب آب ماده مصنوعی PR3005A (بلور آب) می باشد که می توان از آن به منظور بهبود شرایط فیزیکی خاک استفاده نمود. در مرحله اول این تحقیق ابتدا منحنی رطوبتی پلیمر و همچنین میزان تورم آن در مجاورت آب آبیاری و عصاره اشباع خاکهای مورد نظر بدست آمد. در بخش دوم پارامترهای ظرفیت نگهداری آب در خاک، تخلخل و ضریب آبگذری در دو نوع خاک با بافتهای لوم و لوم شنی مورد مطالعه قرار گرفت و در مرحله پایانی تغییرات رطوبت خاک با زمان و تاثیر پلیمر فرا جاذب آب بر روی خاکهای مورد آزمون ارزیابی گردید.

نتایج نشان داد که ماده مورد نظر در این تحقیق می تواند میزان نگهداری رطوبت در خاکهای سبک را افزایش داده و همچنین مشکل نفوذ پذیری خاکهای سنگین را مرتفع نماید و به طور کلی با بهبود شرایط فیزیکی خاک مانع از تنشهای رطوبتی و نهایتا باعث موفقیت برنامه های آبیاری در مناطق خشک و نیمه خشک گردد. از سوی دیگر، قیمت بالای این مواد مصرف انها را در کشت گیاهان زراعی از نظر اقتصادی غیر قابل توجیه نموده و تنها می تواند برای مصرف در کنار درختان در مناطق کم آب که آبیاری آنها هزینه سنگینی را در بر دارد و یا همراه با گیاهان گرانقیمت گلخانه ای مورد توصیه قرار گیرد.

مقدمه

آب عنصری حیاتی است که کمبود آن در مناطق خشک و نیمه خشک گسترش کشت در اراضی مستعد را با محدودیت مواجه می سازد. طبق آمار موجود بیش از 95 درصد از آبی که در کشور مصرف می شود در بخش کشاورزی مورد استفاده قرارمی گیرد در نتیجه بیشترین حجم تلفات آب نیز در این بخش رخ می دهد )بی نام، 1382).

محدودیت منابع آب کشور ضرورت صرفه جویی در مصرف آب را روشن می سازد. اعمال مدیریت صحیح و بکارگیری تکنیکهای پیشرفته به منظور حفظ ذخیره رطوبتی خاک و افزایش ظرفیت نگهداری آب در خاک از جمله اقدامات موثر برای افزایش راندمان آبیاری و در نتیجه بهبود بهره برداری از منابع محدود آب کشور می باشد. دستیابی به اهداف فوق الذکر (حفظ ذخیره رطوبتی، افزایش ظرفیت نگهداری آب در خاک و … ) با انجام اقداماتی نظیر استفاده از کود سبز و آلی، مالچ گیاهی و مصنوعی، ایجاد پوشش گیاهی و یا استفاده از مواد اصلاح کننده نظیر تورب، پرلیت و پلیمرها میسر می باشد.

با توجه به اینکه خاکهای سبک توانایی ذخیره و نگهداری رطوبت کمی را دارند و خاکهای سنگین میزان رطوبت بالایی را در خود نگهداری می کنند اما مقدار رطوبت قابل استفاده گیاه در حد فاصل بین ظرفیت زراعی (F.C)نقطه پژمردگی دائم (P.W.P) نسبتا کم می باشد، با افزودن این ماده به خاک علاوه بر اینکه ظرفیت نگهداری خاک افزایش می یابد نفوذ پذیری آب نیز در خاکهای سنگین اصلاح شده و از میزان تبخیر آب در خاک کاسته می


دانلود با لینک مستقیم


استفاده از پلیمر فرا جاذب آبPR 3005 A جهت موفقیت برنامه های آبیاری در مناطق خشک و نیمه خشک

دانلود پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو

اختصاصی از نیک فایل دانلود پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو


دانلود پروژه طراحی  جاذب دینامیکی ارتعاش برای خودرو

 

 

 

 

 

 

 

فرمت فایل:word  (قابل ویرایش)

تعداد صفحات :60

فهرست مطالب :

صفحه 
مقدمه.......................................................................................................... 4
فصل اول
روشهای کنترل ارتعاش 
مقدمه ........................................................................................................ 7 
1- کنترل ارتعاشات ناشی از لنگی محورهای دوار .................................... 7
2- بالانس موتورهای رفت و برگشتی ...................................................... 8
3- کنترل ارتعاشات پیچشی ..................................................................... 8
4-کنترل فرکاسهای طبیعی ....................................................................... 8
5- استفاده از میراکننده ارتعاش ................................................................ 9
6- استفاده از جداسازهای ارتعاش .............................................................9
سیستم جداسازی ارتعاش با فونداسیون صلب .......................................... 9
سیستم جداسازی ارتعاش با فونداسیون ارتجاعی ..................................... 12
سیستم جداسازی ارتعاش با فونداسیون نسبتاً ارتجاعی ............................ 13
7- استفاده از جاذبهای ارتعاش دینامیکی ................................................. 15
فصل دوم
تئوری جاذب ارتعاش دینامیکی در تحریکات گوناگون 
مقدمه ...................................................................................................... 17
جاذب ارتعاش دینامیکی ......................................................................... 17
جاذب دینامیکی بدون میرا کننده ............................................................ 18 
جاذب دینامیکی با میراکننده ................................................................... 19
جاذب نا میرا تحت تحریک هامونیک با فرکانس ثابت یا شامل باند 
فرکانسی باریک ..................................................................................... 20
جاذب اصطکاک ویسکوزی تحت تحریک هارمونیک بافرکانس ناپایا......25

جاذب با اصطکاک مستقل از فرکانس تحت تحریک هارمونیک با
فرکانس نا پایا ...................................................................................... 33 
به حساب آوردن مقاومت غیر الاستیکی (میرایی ساختاری ) برای
سیستم در معرض تحریک هارمونیک ................................................ 36
تحریک هارمونیک با دامنه متغیر ......................................................... 39 
منابع .....................................................................................................42
مقدمه :
مسأله کاهش میزان ارتعاشات در سازه ها در شاخه های گوناگون تکنولوژی اعم از صنعت، حمل و نقل، ابزار مهندسی و غیره از دیرباز مورد توجه بوده است . اغلب آن مرتبط با نیاز به افزایش مقاومت و کاهش مصالح سازه ها می باشد . با وجود این چنین جنبه هایی از مسأله مانند مواجهه با نیازمندیهای مهندسی، شرایط بهره برداری و محافظت افراد از ارتعاشات مضر نیز، کم اهمیت نیستند . ضرورت حل این مسأله رو به فزونی، به ابعاد بزرگتر سازه ها، افزایش سرعت بهره برداری از ماشینها، استانداردهای بهداشتی سخت گیرانه و خواسته های تکنولوژیکی مربوط میشود . امروزه ما راهها و ابزارهای زیادی برای جلوگیری از ارتعاشات غیر قابل قبول می شناسیم ، به ویژه ، کاش خطاهای نامیزانی و میزان کردن ماشینهایی که منبع بارهای دینامیکی هستند . ما می توانیم پارامتر های سختی و اینرسی سازه های را برای سازگاری آنها در برابر تشدید تغییر دهیم ، خاصیت میرایی را به وسیله استفاده از مصالحی که دارای توانایی میرایی بالایی هستند افزایش دهیم ، استفاده از عایقها و جاذبهای ارتعاش هم از دیگر روش های کاهش ارتعاش می باشد . هر یک از روش های مذکور محدوده معقولی برای کاربرد دارند . جاذبها نقش ویژه ای داند زیرا نه تنها می تواند در مرحله طرح و ساخت ، بلکه هنگام نمایان شدن خواص دینامیکی نارضایت بخش در سازه به هنگام بهره برداری هم به کار روند. جاذبها با صرفه نیز هستند زیرا در یک هزینه نسبتاً کم،کاهش مورد نیاز میزان ارتعاش را بیمه می کنند . جاذبها کاربرد زیادی دارند،استفاده آنها در کشتی سازی معروف است . آنها دیرینه ای در کاهش ارتعاش کابلها دارند .مثالهای بیشماری از کاربرد آنها در کاهش ارتعاش در سازه های گوناگون مهندسی وجود دارد : دودکشهای فولادی ،برجهای تلویزیونی ، پلها، ساختمانها وغیره. جاذبهای ارتعاش برای بهبود بهره برداری از ابزارهای اندازه گیری و عایق ارتعاش در حالتهای گذرا استفاده می شوند.
رویکرد اصلی پژوهش در زمینه جذب ارتعاش شامل : بهینه سازی پارامترها و ارزیابی بازده جاذب دینامیکی در شرایط پایدار و گذرا تحت حرکات دینامیکی گوناگون ، بررسی بازده جاذب دینامیکی خطی و غیر خطی ، یافتن زمینه هایی از بیشترین کاربرد سودمند جاذب دینامیکی در سازه های واقعی با طرح های نسبتاً ساده و یا بسیار پیچیده ، بررسی سیستم های دو یا چند درجه آزادی و تکمیل روشهای محاسباتی کارآمد برای ساختارهایی با جاذب دینامیکی و... می باشد.
ما در اینجا ساده ترین مدل مکانیکی جاذب یعنی جاذب خطی تک جرمی را مورد بررسی قرار خواهیم داد ، که بسته به نیازها و محدودیتها می تواند شکلهای گوناگونی داشته باشد . به علاوه برای افزایش راندمان در یک باند فرکانسی معین و یا برای افزایش باند فرکانس بهره برداری می تواند خیلی پیچیده ساخته شود.
فصل اول: 
روشهای 
کنترل ارتعاش
مقدمه:
در این فصل تکنیکهای متعددی را برای کنترل ارتعاش مورد بررسی قرار خواهیم داد که شامل روشهای حذف یا کاهش ارتعاش می باشند. منابع متعددی برای ارتعاش در یک محیط صنعتی وجود دارد : فرآیندهای بر خورد مانند شمع کوبی و دمیدن جریان هوا یا بخار ، ماشینهای دوار یا رفت و برگشتی مانند موتورها و کمپرسورها ، وسایل نقلیه مانند کامیونها ، ترنها و هواپیماها ، جریان سیالات و بسیاری منابع دیگر . وجود ارتعاش اغلب منجر به تأثیرات ناخواسته از قبیل انهدام سازه ای یا مکانیکی ، تعمیر و نگهداری پی در پی و پر خرج ماشینها و صلب آسایش از انسان می گردد . گاهی ارتعاش می تواند بر مبنای تجزیه و تحلیل تئوریک از بین برود ولی برای از بین بردن ارتعاش ممکن است متحمل هزینه های ساخت بسیار زیادی شویم . یک طراح باید بین یک حد ارتعاش قابل قبول و یک هزینه ساخت مقبول تصمیم گیری کند . در بعضی موارد نیروی محرک جزء جدانشدنی ماشین می باشد ، همانطور که می دانیم حتی یک نیروی محرکه نسبتاً کوچک می تواند در فرکانسهای طبیعی سیستم باعث تشدید گردد بخصوص در سیستم هایی که دارای میرایی اندک هستند . در این حالات می توان با استفاده از روشهای کنترل ارتعاش پاسخ را به مقدار قابل ملاحظه ای کاهش داد .

1- کنترل ارتعاشات ناشی از لنگی محور های دوار: 
تمام محورهای دوار انعطاف پذیر هستند و بنابراین تمایل دارند که در سرعتهای معینی کمانش کرده و بطور پیچیده ای دچار لنگی شوند . لنگی می تواند به صورت دوران صفحه ما بین محور خمیده شده و خط واصل مراکز یاتاقانها تعریف گردد . لنگی ناشی از عواملی از قبیل نامیزانی ، اصطکاک سیال در یاتاقانها ،نیروهای ژیروسکوپی ،و استهلاک هیستریک در محور می باشد . لنگی می تواند هم جهت با چرخش محور یا در خلاف جهت آن روی دهد و سرعت چرخش می تواند مساوی با سرعت چرخش محور باشد یا با آن مساوی نباشد. یک محور در حال گردش در سرعت های معینی ارتعاشات عرضی بیش از حدی از خود نشان می دهد . این سرعت با فرکانس های طبیعی سیستم متناظر می باشد و به سرعت بحرانی موسوم است و در این حالت تشدید رخ خواهد داد . در سرعت بحرانی انحراف محور زیاد بوده و نیروی وارده به یاتاقانها خیلی زیاد است و باعث ارتعاش بدنه ماشین خواهد شد و این میتواند منجربه صدمات ساختمانی به یاتاقانها و بدنه گردد. به علاوه انحراف زیاد محور موجب تغییر شکل دائمی آن و یا برخورد روتور با محفظه می گردد . دامنه ارتعاش محور در سرعت بحرانی زمانی به حد خطرناک می رسد که فرصت لازم برای رسیدن به آن دامنه را داشته باشد . بنابراین اگر ماشین از سرعت بحرانی سریع عبور کند دامنه می تواند قابل قبول باشد ، در حالی که عبور آهسته به توسعه دامنه های بزرگ کمک می کند ومی تواند خسارات جبران ناپذیری ایجاد کند .

2- بالانس موتورهای رفت و برگشتی: 
اجزاء متحرک اصلی یک موتور رفت و برگشتی عبارتند از : پیستون ، میل لنگ و شاتون .
ارتعاشات در موتور های رفت و برگشتی در اثر عوامل زیر رخ می دهد :
1- تغییرات متناوب فشار گاز درون سیلندر 
2- نیروهای اینرسی که در قسمتهای متحرک تمرکز یافته اند .

یک موتور تک سیلندر به طور اجتناب ناپذیری نامیزان است ، در حالی که در یک موتور چند سیلندر می توان با آرایش مناسب لنگها ، نیروها و گشتاورهای موجود را بالانس نمود .

3- کنترل ارتعاشات پیچشی:
موقعی که محوری گشتاوری را منتقل می کند تحت تأثیر پیچش قرار می گیرد و اگر گشتاور انتقالی دارای تغییرات تناوبی باشد محور به صورت پیچش و باز پیچش نوسان می کند . اگر فرکانس گشتاور انتقالی با فرکانس طبیعی ارتعاش پیچشی محور برابر شود ، این مطلب موجب می شوده دامنه ارتعاش پیچشی بالا رفته و باعث صدمه دیدن محور گردد . سرعت کاری ماشین نزدیک یکی از سرعتهای بحرانی باشد می توان طرح را به گونه ای تغییر داد که فرکانس طبیعی ارتعاش پیچشی آن بالا رفته و ارتعاش حذف گردد و یا با نصب مستهلک کننده دامنه آنها را کاهش داد . 

4- کنترل فرکانسهای طبیعی: 
فرکانس طبیعی یک سیستم هم با جرم و هم با سختی تغییر می کند ولی در بسیاری حالات عملی جرم به سادگی قابل تغییر نمی باشد ، زیرا مقدار آن توسط ملزومات تابعه سیستم محاسبه شده است . به عنوان مثال جرم چرخ طیار سوار بر یک محور ، توسط مقدار انرژی که باید در یک سیکل ذخیره کند محاسبه شده است . بنابراین سختی سیستم عاملی است که در اکثر موارد عوض می شود تا فرکانسهای طبیعی آن تغییر کند . به عنوان مثال سختی یک محور دوار با تغییر یک یا چند پارامتر آن از قبیل مواد یا تعداد و موضع نقاط تکیه گاهی می تواند تغییر نماید . 
5- استفاده از میرا کننده ارتعاش: 
اگر چه میرایی به منظور ساده کردن آنالیز ، به ویژه در یافتن فرکانسهای طبیعی صرف نظر می شود ، اما بیشتر سیستمها تا اندازه ای دارای میرایی می باشند . در بعضی از حالات حضور میرایی مفید است . در سیستمهایی نظیر جاذبهای شوک در اتومبیل ها و بسیاری از وسایل اندازه گیری ارتعاش، بایستی میرایی را بیفزاییم ،تا ملزوامات را تابعه را تاًمین نماید .اگرسیستم تحت تأثیر ارتعاش واداشته قرار گیرد ،و اگر میرایی موجود نباشد پاسخ یا دامنه نوسان سیستم تمایل به بزرگ شدن در نزدیکی تشدید دارد . حضور میرایی همواره دامنه نوسان را محدود می کند . میرا کننده های ارتعاش به صورت اصطکاکی ، ویسکوزی و یا ساختمانی باعث اتلاف انرژی می شوند . یک نوع میرا کننده از نوع اصطکاکی که به میرا کننده لانکستر شهرت دارد ، در سیستمهای پیچشی مانند موتورهای گازی و دیزلی برای محدود کردن دامنه های ارتعاش در سرعتهای بحرانی استفاده عملی پیدا کرده است . یک میرا کننده دیگر از نوع ویسکوزی که برای از بین بردن ارتعاشات پیچشی موتورهای اتومبیل به کار می رود متشکل از یک جرم چرخشی آزاد در داخل یک حفره استوانه ای پر از سیال لزج است . این سیستم معمولاً به پولی انتهای میل لنگ که تسمه پروانه را میگرداند متصل می شود و اغلب به آن میرا کننده هودیل گفته می شود. 


دانلود با لینک مستقیم


دانلود پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو

دانلود سمینار تعامل بین جاذب های اجزاء چهره و جاذب های چهره کامل در قشر گیجگاهی مغز

اختصاصی از نیک فایل دانلود سمینار تعامل بین جاذب های اجزاء چهره و جاذب های چهره کامل در قشر گیجگاهی مغز دانلود با لینک مستقیم و پر سرعت .

دانلود سمینار تعامل بین جاذب های اجزاء چهره و جاذب های چهره کامل در قشر گیجگاهی مغز


دانلود سمینار تعامل بین جاذب های اجزاء چهره و جاذب های چهره کامل در قشر گیجگاهی مغز

چکیده:
نقش سلول چهره در قشر گیجگاهی مغز در فایند بازشناسی چهره چیست؟ گروهی از نرون ها در قشر گیجگاهی به صورت گزینشی به تصاویر چهره پاسخ می دهند، ولی نقش دقیق آن ها و مزیت محاسباتی این سلول ها در شناسایی چهره به درستی مشخص نشده است.
ما شبکه عصبی ماژولاری شبیه سازی کردیم که به طور ساده ای ستون های ویژگی در قشر گیجگاهی را مدل می کرد. سلول های این ناحیه به اشیاء با پیچیدگی متوسط پاسخ می دهند. در ادامه، شبکه دو لایه ای ساختیم که پس از لایه اول ذکر شده، دارای ذکر شده، دارای لایه دوم بود که سلول های چهره را مدل می کرد.
این لایه تصاویر چهره به صورت یک کل ذخیره می کند. شبکه ها دارای نروهای تحریکی-مهاری با تابع فعالیت آستانه خطی هستند که دارای پارامتر های مطابق با مقادیر واقعی بیولوژیکی هستند. ورودی به شبکه ها چهره های انتخابی تصادفی از پایگاه داده کیت چهره بود.
یکی از اجزای چهره تغییر می کرد یا به صورت ناقص به شبکه ارائه می شد، سپس کارایی شبکه در دو وظیفه فراخوانی و بازنشانی محاسبه می گردید. نتایج ما برتری شبکه دو لایه را در باز نشانی چهره نشان می داد، در شرایطی که لایه اول به جزء چهره غلط در بیشتر آزمایش ها میل می کرد، لایه دوم با داشتن اطلاعات ارتباط بین اجزاء چهره به جزء چهره هدف میل می کرد. از طریق این شبیه سازی ها ما دریافتیم که یکی از نقش های سلول چهره وارد کرد هویت در شبکه است که این کار با ارتباط برقرار کردن بین اجزاء یک محرک ترکیبی همچون چهره انجام می گیرد. ما پیشنهاد می کنیم این ساختار کمک به نمایان ساختن تغییرات کوچک در محرک می کند.
یک آزمایش سایکو-فیزیک طراحی گردید که در آن به افراد یک سری چهره از پایگاه داده نشان داده می شد. یک نام به هر کدام از چهره ها اختصاص پیدا کرده بود. فاز تست از دو قسمت تشکیل شده بود. در قسمت اول، به افراد یک جزء چهره به تنهایی نشان داده می شد. در قسمت دوم، از افراد خواسته می شد که چهره های کامل را که فقط در جزء قسمت اول فرق داشتند شناسایی کنند.
نتایج آزمایش نشان می دهد که افراد در شناسایی اجزای چهره وقتی که در کل چهره ظاهر شده باشند بهتر هستند نسبت به وقتی که به تنهایی ظاهر شوند. این نتیجه، نتایج شبیه سازی های ما را نیز تایید می کند: اطلاعات درباره ارتباط بین اجزاء چهره کمک به بازنشانی و فراخوانی آن جزء می کند.

قشر-گیجگاهی-مغز

فهرست مطالب:
چکیده
مقدمه
فصل اول: سیستم بینایی
۱-۱-شبکیه چشم انسان
۱-۱-۱-پاسخ سلول های دو قطبی
۱-۱-۲-سلول های گانگلیون
۱-پاسخ سلول های گنگلیون شبکه به نور
۱-۲-کورتکس های مختلف بینایی
۱-۲-۱-سلول های ساده در کورتکس اولیه بینایی
۱-۲-۲-سلول های مرکب
۱-۳-ساختار سلولی کورتکس بینایی
۱-۴-میدان بینایی
۱-۵-مقصدهای عصب بینایی
۱-۵-۱-مسیرهای مرکزی دیداری
۱-۶-جمع بندی: مغز به عنوان یک سیستم عظیم پردازش اطلاعات

فصل دوم: سلول چهره
۲-۱-تاریخچه
۲-۲-آیا واقعاً این سلول ها حساس به چهره هستند؟
۲-۳-ویژگی های سلول های چهره
۲-۴-جمع بندی: چرا سلول چهره؟

فصل سوم: عملکرد شبکه های عصبی در مغز
۳-شبکه های عصبی
۳-۱-حافظه ارتباط الگو
۳-۱-۱-ساختار و عملکرد
۳-۱-۲-یادگیری
۳-۱-۳-یادآوری
۳-۱-۴-یک مدل ساده
۳-۱-۵-تفسیر برداری
۳-۱-۶-کلی نگری
۳-۱-۷-تلورانس خطا
۳-۱-۸-اهمیت توزیع نمایش الگو
۳-۱-۹-ظرفیت
۳-۲-شبکه های انجمنی خطی
۳-۲-۱-شبکه های انجمنی با نورون های غیرخطی
۳-۲-۲-تداخل
۳-۲-۳-کدگذاری دوباره به صورت توسعه یافته
۳-۳-حافظه خود انجمنی
۳-۳-۱-ساختار و عملکرد
۳-۳-۲-یادگیری
۳-۳-۳-یادآوری
۳-۳-۴-آشنایی با تحلیل عملکرد شبکه های خود انجمنی
۳-۳-۵-خصوصیات
۳-۳-۶-ظرفیت
۳-۳-۷-وضعیت های ترکیبی
۳-۴-شبکه های رقابتی، شامل مدل های خود سازمانده
۳-۴-۱-ساختار
۳-۴-۲-الگوریتم
۳-۴-۳-کشف ویژگی با خودسازماندهی
۳-۴-۴-از بین بردن زوائد
۳-۴-۵-جداسازی و الگوهای جدا پذیر غیر خطی

فصل چهارم: نتیجه گیری و پیشنهادات
منابع و مراجع

نوع فایل : pdf

حجم فایل : ۲٫۲ مگابایت (zip)

تعداد صفحات : ۷۵ صفحه

قیمت : 6000 تومان


دانلود با لینک مستقیم


دانلود سمینار تعامل بین جاذب های اجزاء چهره و جاذب های چهره کامل در قشر گیجگاهی مغز

پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو

اختصاصی از نیک فایل پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو دانلود با لینک مستقیم و پر سرعت .

پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو


پروژه طراحی  جاذب دینامیکی ارتعاش برای خودرو

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:42


فهرست مطالب:

عنوان                                                                   صفحه
مقدمه.......................................................................................................... 4
فصل اول
روشهای کنترل ارتعاش
مقدمه ........................................................................................................ 7
1- کنترل ارتعاشات ناشی از لنگی محورهای دوار .................................... 7
2- بالانس موتورهای رفت و برگشتی ...................................................... 8
3- کنترل ارتعاشات پیچشی ..................................................................... 8
4-کنترل فرکاسهای طبیعی ....................................................................... 8
5- استفاده از میراکننده ارتعاش ................................................................ 9
6- استفاده از جداسازهای ارتعاش .............................................................9
سیستم جداسازی ارتعاش با فونداسیون صلب .......................................... 9
سیستم جداسازی ارتعاش با فونداسیون ارتجاعی ..................................... 12
سیستم جداسازی ارتعاش با فونداسیون نسبتاً ارتجاعی ............................ 13
7- استفاده از جاذبهای ارتعاش دینامیکی ................................................. 15
فصل دوم
تئوری جاذب ارتعاش دینامیکی در تحریکات گوناگون
مقدمه ...................................................................................................... 17
جاذب ارتعاش دینامیکی ......................................................................... 17
جاذب دینامیکی بدون میرا کننده ............................................................ 18
جاذب دینامیکی با میراکننده ................................................................... 19
جاذب نا میرا تحت تحریک هامونیک با فرکانس ثابت یا شامل باند
فرکانسی باریک ..................................................................................... 20
جاذب اصطکاک ویسکوزی تحت تحریک هارمونیک بافرکانس ناپایا......25

جاذب با اصطکاک مستقل از فرکانس تحت تحریک هارمونیک با
 فرکانس نا پایا ...................................................................................... 33  
به حساب آوردن مقاومت غیر الاستیکی (میرایی ساختاری ) برای
 سیستم در معرض تحریک هارمونیک ................................................ 36
تحریک هارمونیک با دامنه متغیر ......................................................... 39
منابع .....................................................................................................42



مقدمه :
مسأله کاهش میزان ارتعاشات در سازه ها در شاخه های گوناگون تکنولوژی اعم از صنعت، حمل و نقل، ابزار مهندسی و غیره از دیرباز مورد توجه بوده است . اغلب آن مرتبط با نیاز به افزایش مقاومت و کاهش مصالح سازه ها می باشد . با وجود این چنین جنبه هایی از مسأله مانند مواجهه با نیازمندیهای مهندسی، شرایط بهره برداری و محافظت افراد از ارتعاشات مضر نیز، کم اهمیت نیستند . ضرورت حل این مسأله رو به فزونی، به ابعاد بزرگتر سازه ها، افزایش سرعت بهره برداری از ماشینها، استانداردهای بهداشتی سخت گیرانه و خواسته های تکنولوژیکی مربوط میشود . امروزه ما راهها و ابزارهای زیادی برای جلوگیری از ارتعاشات غیر قابل قبول می شناسیم ، به ویژه ، کاش خطاهای نامیزانی و میزان کردن ماشینهایی که منبع بارهای دینامیکی هستند . ما می توانیم پارامتر های سختی و اینرسی سازه های را برای سازگاری آنها در برابر تشدید تغییر دهیم ، خاصیت میرایی را به وسیله استفاده از مصالحی که دارای توانایی میرایی بالایی هستند افزایش دهیم ، استفاده از عایقها و جاذبهای ارتعاش هم از دیگر روش های کاهش ارتعاش می باشد . هر یک از روش های مذکور محدوده معقولی برای کاربرد دارند . جاذبها نقش ویژه ای داند زیرا نه تنها می تواند در مرحله طرح و ساخت ، بلکه هنگام نمایان شدن خواص دینامیکی نارضایت بخش در سازه به هنگام بهره برداری هم به کار روند. جاذبها با صرفه نیز هستند زیرا در یک هزینه نسبتاً کم،کاهش مورد نیاز میزان ارتعاش را بیمه می کنند . جاذبها کاربرد زیادی دارند،استفاده آنها در کشتی سازی معروف است . آنها دیرینه ای در کاهش ارتعاش کابلها دارند .مثالهای بیشماری از کاربرد آنها در کاهش ارتعاش در سازه های گوناگون مهندسی وجود دارد :  دودکشهای فولادی ،برجهای تلویزیونی ، پلها، ساختمانها وغیره. جاذبهای ارتعاش برای بهبود بهره برداری از ابزارهای اندازه گیری و عایق ارتعاش در حالتهای گذرا استفاده می شوند.
رویکرد اصلی پژوهش در زمینه جذب ارتعاش شامل : بهینه سازی پارامترها و ارزیابی بازده جاذب دینامیکی در شرایط پایدار و گذرا تحت حرکات دینامیکی گوناگون ، بررسی بازده جاذب دینامیکی خطی و غیر خطی ، یافتن زمینه هایی از بیشترین کاربرد سودمند جاذب دینامیکی در سازه های واقعی با طرح های نسبتاً ساده و یا بسیار پیچیده ، بررسی سیستم های دو یا چند درجه آزادی و تکمیل روشهای محاسباتی کارآمد برای ساختارهایی با جاذب دینامیکی و... می باشد.
ما در اینجا ساده ترین مدل مکانیکی جاذب یعنی جاذب خطی تک جرمی را مورد بررسی قرار خواهیم داد ، که بسته به نیازها و محدودیتها می تواند شکلهای گوناگونی داشته باشد . به علاوه برای افزایش راندمان در یک باند فرکانسی معین و یا برای افزایش باند فرکانس بهره برداری می تواند خیلی پیچیده ساخته شود.


فصل اول:

 روشهای کنترل ارتعاش


مقدمه:
در این فصل تکنیکهای متعددی را برای کنترل ارتعاش مورد بررسی قرار خواهیم داد که شامل روشهای حذف یا کاهش ارتعاش می باشند. منابع متعددی برای ارتعاش در یک محیط صنعتی وجود دارد : فرآیندهای بر خورد مانند شمع کوبی و دمیدن جریان هوا یا بخار ، ماشینهای دوار یا رفت و برگشتی مانند موتورها و کمپرسورها ، وسایل نقلیه مانند کامیونها ، ترنها و هواپیماها ، جریان سیالات و بسیاری منابع دیگر . وجود ارتعاش اغلب منجر به تأثیرات ناخواسته از قبیل انهدام سازه ای یا مکانیکی ، تعمیر و نگهداری پی در پی و پر خرج ماشینها و صلب آسایش از انسان می گردد . گاهی ارتعاش می تواند بر مبنای تجزیه و تحلیل تئوریک از بین برود ولی برای از بین بردن ارتعاش ممکن است متحمل هزینه های ساخت بسیار زیادی شویم . یک طراح باید بین یک حد ارتعاش قابل قبول و یک هزینه ساخت مقبول تصمیم گیری کند . در بعضی موارد نیروی محرک جزء جدانشدنی ماشین می باشد ، همانطور که می دانیم حتی یک نیروی محرکه نسبتاً کوچک می تواند در فرکانسهای طبیعی سیستم باعث تشدید گردد بخصوص در سیستم هایی که دارای میرایی اندک هستند . در این حالات می توان با استفاده از روشهای کنترل ارتعاش پاسخ را به مقدار قابل ملاحظه ای کاهش داد .

1- کنترل ارتعاشات ناشی از لنگی محور های دوار:
تمام محورهای دوار انعطاف پذیر هستند و بنابراین تمایل دارند که در سرعتهای معینی کمانش کرده و بطور پیچیده ای دچار لنگی شوند  . لنگی                                                             می تواند به صورت دوران صفحه ما بین محور خمیده شده و خط واصل مراکز یاتاقانها تعریف گردد . لنگی ناشی از عواملی از قبیل نامیزانی ، اصطکاک سیال در یاتاقانها ،نیروهای ژیروسکوپی ،و استهلاک هیستریک در محور می باشد . لنگی می تواند هم جهت با چرخش محور یا در خلاف جهت آن روی دهد و سرعت چرخش می تواند مساوی با سرعت چرخش محور باشد یا با آن مساوی نباشد. یک محور در حال گردش در سرعت های معینی ارتعاشات عرضی بیش از حدی از خود نشان می دهد . این سرعت با فرکانس های طبیعی سیستم متناظر می باشد و به سرعت بحرانی موسوم است و در این حالت تشدید رخ خواهد داد . در سرعت بحرانی انحراف محور زیاد بوده و نیروی وارده به یاتاقانها خیلی زیاد است و باعث ارتعاش بدنه ماشین خواهد شد و این میتواند منجربه صدمات ساختمانی به یاتاقانها و بدنه گردد. به علاوه انحراف زیاد محور موجب تغییر شکل دائمی آن و یا برخورد روتور با محفظه می گردد . دامنه ارتعاش محور در سرعت بحرانی زمانی به حد خطرناک می رسد که فرصت لازم برای رسیدن به آن دامنه را داشته باشد . بنابراین اگر ماشین از سرعت بحرانی سریع عبور کند دامنه می تواند قابل قبول باشد ، در حالی که عبور آهسته به توسعه دامنه های بزرگ کمک می کند ومی تواند خسارات جبران ناپذیری ایجاد کند .

2- بالانس موتورهای رفت و برگشتی:
اجزاء متحرک اصلی یک موتور رفت و برگشتی عبارتند از : پیستون ، میل لنگ و شاتون .
ارتعاشات در موتور های رفت و برگشتی در اثر عوامل زیر رخ می دهد :
1- تغییرات متناوب فشار گاز درون سیلندر
2- نیروهای اینرسی که در قسمتهای متحرک تمرکز یافته اند .      

یک موتور تک سیلندر به طور اجتناب ناپذیری نامیزان است ، در حالی که در یک موتور چند سیلندر می توان با آرایش مناسب لنگها ، نیروها و گشتاورهای موجود را بالانس نمود .

3- کنترل ارتعاشات پیچشی:
موقعی که محوری گشتاوری را منتقل می کند تحت تأثیر پیچش قرار می گیرد و اگر گشتاور انتقالی دارای تغییرات تناوبی باشد محور به صورت پیچش و باز پیچش نوسان می کند . اگر فرکانس گشتاور انتقالی با فرکانس طبیعی ارتعاش پیچشی محور برابر شود ، این مطلب موجب می شوده دامنه ارتعاش پیچشی بالا رفته و باعث صدمه دیدن محور گردد . سرعت کاری ماشین نزدیک یکی از سرعتهای بحرانی باشد می توان طرح را به گونه ای تغییر داد که فرکانس طبیعی ارتعاش پیچشی آن بالا رفته و ارتعاش حذف گردد و یا با نصب مستهلک کننده دامنه آنها را کاهش داد .


دانلود با لینک مستقیم


پروژه طراحی جاذب دینامیکی ارتعاش برای خودرو

پروژه طراح‍ی بادامک برای جاذب دینامیکی وتحلیل آنالیزهای جامداتی برای فنر برگی بوسیله نرم افزار Ansys

اختصاصی از نیک فایل پروژه طراح‍ی بادامک برای جاذب دینامیکی وتحلیل آنالیزهای جامداتی برای فنر برگی بوسیله نرم افزار Ansys دانلود با لینک مستقیم و پر سرعت .

پروژه طراح‍ی بادامک برای جاذب دینامیکی وتحلیل آنالیزهای جامداتی برای فنر برگی بوسیله نرم افزار Ansys


پروژه طراح‍ی بادامک برای جاذب دینامیکی وتحلیل آنالیزهای جامداتی برای فنر  برگی بوسیله نرم افزار Ansys

 

 

 

 

 

 




فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:53

فهرست مطالب:
    
             عنوان                                                                               صفحه                

فصل اول-طراحی بادامکها………………………………………………….…1                                                                                 
 دسته بندی بادامک ها وپیروها………………………………………………...…..…2
نمودارهای جابجایی…………………………………………………………..…6.
طراحی ترسیمی پروفیل بادامک……………………………………………………...11

فصل دوم-مدل سازی…………………………………………………14                                                                                       
 تعریف المان های مورد نیاز……………………………………………….……..15
تعریف خواص مواد………………………………………………………..…....16
مدلسازی فنر برگی…………………………………………………….…….…17
شبکه بندی مدل……………………………………………………….……....20
حجم دادن به مدل…………………………………………………….……….23
پاک کردن المان های دو بعدی…………………………………………….……...24

فصل سوم-آنالیز استاتیکی……………………..………………………..25                                                                                  
آنالیز استاتیکی………………………………………..……………….………26
تعیین نوع آنالیز و بارگذاری……………………………..…………….…………27
حل مسأله………………………………………………..…………….…….28
مشاهده نتایج……………………………………………………..….……….29
 

فصل چهارم-آنالیز مودال………………………………………….……30                                                                                     
آنالیز مودال.......................................................................................................................................31
تعیین نوع آنالیز وگزینه های مربوط به آن.......................................................................................32
بارگذاری واعمال شرایط مرزی.......................................................................................................33
حل مسأله........................................................................................................................................34
مشاهده نتایج...................................................................................................................................34
گرفتن فایل متحرک سازی..............................................................................................................36

فصل پنجم-آنالیز هارمونیک.................................................................................38                                                                                  
آنالیز هارمونیک..............................................................................................................................39
تعیین نوع آنالیز و تنظیمات مربوط به آن.......................................................................................40
بارگذاری واعمال شرایط مرزی.......................................................................................................41
حل مسأله.......................................................................................................................................42
مشاهده نتایج..................................................................................................................................42

فصل ششم-آنالیز دینامیکی.................................................................................45
آنالیز دینامیکی..............................................................................................................................46
 تعیین نوع آنالیز و تنظیمات مربوط به آن....................................................................................46
 بارگذاری.....................................................................................................................................47
 حل مسأله....................................................................................................................................50
مشاهده نتایج.................................................................................................................................50

منابع..............................................................................................................................................53
                                  

 

 فصل اول:
طراحی بادامک ها

دسته بندی بادامک ها و پیروها
    بادامک عضوی مکانیکی است که برای راندن عضوی دیگر، به نام پیرو، از طریق حرکتی مشخص و با تماس مستقیم به کار می رود. مکانیسمهای بادامک و پیرو ساده و ارزان اند، اجزای متحرک معدودی دارند و جای بسیار کمی را اشغال می کنند. به علاوه طراحی حرکتهای پیرو با هر نوع مشخصه مطلوب، دشوار نیست. به همین سبب در ماشینهای مدرن از مکانیسم های بادامکی به گستردگی استفاده می شود.
    تنوع و انعطاف پذیری موجود در طراحی سیستمهای بادامکی نیز از جمله         جنبه های جذاب آنهاست. در نتیجه همین تنوع، بادامکهایی به شکلهای گوناگون طراحی می شود و برای شناسایی آنها اصطلاحات خاصی مورد نیاز است.
    بادامکها را بر اساس شکل اصلی آنها دسته بندی می کنند. در شکل 1 چهار نوع مختلف از بادامکها نشان داده شده است:
الف) بادامک تخت، که بادامک دیسکی یا بادامک شعاعی نیز نامیده می شود.
(د) بادامک گوه ای   
ب) بادامک استوانه ای یا بادامک بشکه ای
د) بادامک انتهایی یا بادامک رویه ای




شکل 1:  انواع بادامکها: الف) بادامک تخت، (ب) بادامک گوه ای، (ج) بادامک بشکه ای، و (د) بادامک رویه ای.
 
سیستمهای بادامکی را می توان بر اساس شکل اصلی پیرو نیز طبقه بندی کرد. در شکل2 بادامکهای تختی که با چهار نوع پیرو مختلف حرکت می کنند نشان داده شده است:



شکل 2: بادامکهای تخت با (الف) پیرو رفت و برگشتی لبه چاقویی خارج از مرکز. (ب) پیرو روتخت رفت و برگشتی، (ج) پیرو غلتکی نوسانی، و (د) پیرو منحنی با حرکت نوسانی.
الف) پیرو لبه چاقویی
ب) پیرو روتخت
ج) پیرو غلتکی
د) پیرو روگِرد یا پیرو با کفشک خمیده
توجه داشته باشید که رویه پیرو معمولاً شکل هندسی ساده ای دارد و حرکت مورد نظر از طریق طراحی مناسب بادامک درگیر با آن حاصل می شود.
    روش دیگر دسته بندی بادامکها بر حرکت خروجی مجاز بین پیرو و بادامک مبتنی   است. بنابراین بعضی از بادامکها پیرو رفت و برگشتی (انتقالی) دارند، مانند بادامکهای نشان داده شده در شکلهای 1 (الف)، (ب)، (د) و 2 (الف) و (ب)، در حالی که بعضی دیگر، همچون بادامکهای شکلهای 1 (ج) و 2 (ج) و (د) پیرو نوسانی (چرخان) دارند، با دسته بندی پیروهای دارای حرکت رفت و برگشتی می توان تشخیص داد که آیا ساقه پیرو نسبت به مرکز بادامک خارج از مرکز است (شکل 2 الف) یا شعاعی است (شکل 2 ب) .







شکل 3 (الف) بادامک با پهنای ثابت و پیرو رو تخت رفت و برگشتی. (ب) بادامکهای همیوغ با پیرو غلتکی نوسانی.

    طراح در هنگام طراحی همه سیستمهای بادامکی باید اطمینان حاصل کند که پیرو همواره با بادامک در تماس می ماند. این تماس را می توان با اتکا به گرانش، با استفاده از فنری مناسب، یا به کمک قیدی مکانیکی برقرار نگه داشت. در شکل 1 (ج) پیرو توسط شیار مقید شده است. در شکل 3 (الف) نمونه ای از بادامک با پهنای ثابت نشان داده شده است که در آن دو نقطه تماس بین بادامک و پیرو، قید لازم را فراهم می کنند. با به کارگیری بادامکهای جفت یا همیوغ به شیوه نشان داده شده در شکل 3 (ب) نیز می توان قید مکانیکی را ایجاد کرد. در این شکل هر بادامک غلتکی خاص خود دارد، اما غلتکها بر روی یک پیرو نصب شده اند.


دانلود با لینک مستقیم


پروژه طراح‍ی بادامک برای جاذب دینامیکی وتحلیل آنالیزهای جامداتی برای فنر برگی بوسیله نرم افزار Ansys