نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیک فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه طراحی و تحلیل مخازن کامپوزیتی تحت فشار

اختصاصی از نیک فایل دانلود پایان نامه طراحی و تحلیل مخازن کامپوزیتی تحت فشار دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه طراحی و تحلیل مخازن کامپوزیتی تحت فشار


دانلود پایان نامه طراحی و تحلیل مخازن کامپوزیتی تحت فشار

 

 

 

 

 

 

 

 

 

 

 

نوع فایل : word(قابل ویرایش )

تعداد صفحات :49

 

چکیده

یک مسئله مهم در طراحی مخازن تحت فشار، محاسبه تنش­ها و کرنش­ها با توجه به تاثیرات هردو عامل فشار و دما می­باشد.

ابتدا معادلات تنش­ها و کرنش­های نوسانی با استفاده از روش­های تئوری و سپس تغییرات دما در جدار مخزن ناشی از اعمال دما، با استفاده از روش­های تفاضل محدود محاسبه گردیده است. در ادامه تغییرات تنش و کرنش در جدار مخزن و تاثیر زاویه الیاف، ضخامت مخزن، تعداد لایه ها و زاویه الیاف بر ظرفیت تحمل فشار و دما در حالت فشار استاتیکی و دمای حالت پایدار، مورد بررسی قرار گرفته و منحنی های فشار-دما با استفاده از تئوری هافمن برای مخازن با لایه­گذاری­های مختلف از جنس برن- اپوکسی ارائه شده است.

در تحقیق حاضر تحلیل مخازن تحت فشار کامپوزیتی جدار ضخیم، تحت اثر فشار و دما، مورد بررسی قرار گرفته است.

 

فهرست

1-1پیشگفتار. 2

1- 2 مروری بر مطالب پیشین.. 2

1-3 هدف پژوهش حاضر. 5

1-4 انواع مخازن. 6

1-5 مخازن نوع دوم-دور پیچ.. 7

1-6 مخازن نوع سوم-تمام پیچ.. 8

1-7 مخازن نوع چهارم-تمام کامپوزیتی.. 8

1-8 مقایسه انواع مخازن. 9

2-1 روابط بین تنش و کرنش و تغییر مکان در مختصات استوانه ای.. 12

2-2 معادلات ساختاری.. 12

2-3 توزیع تنشها تحت بارگذاری فشاری.. 16

2-4 تعمیم مخزن تک لایه به مخزن چند لایه. 17

3-1 تعریف مسئله و فرضیات.. 20

3-2 توزیع دما در جدار مخزن. 22

4-1 بررسی نتایج.. 28

4-2 تحلیل نمودارها 29

5-1 نتیجه گیری.. 39

مراجع. 40


دانلود با لینک مستقیم


دانلود پایان نامه طراحی و تحلیل مخازن کامپوزیتی تحت فشار

بررسی رسوب در مخازن سدهای انحرافی

اختصاصی از نیک فایل بررسی رسوب در مخازن سدهای انحرافی دانلود با لینک مستقیم و پر سرعت .

بررسی رسوب در مخازن سدهای انحرافی


سمینار ارشد برق بررسی رسوب در مخازن سدهای انحرافی
بررسی رسوب در مخازن سدهای انحرافی

An investigation on reservoir sedimentation of diversion dams




چکیده :

همانطور که می دانیم رسوبگذاری در مخازن پدیده ایست اجتناب ناپذیر که بسته به مقدار تولید رسوب در حوضه و نحوه پخش آن موجب کاهش عمر مفید سدها و تاسیسات وابسته به آن می شود.
در نتیجه تخمین رسوبات وارده چه در مخزن و چه در رودخانه امری ضـروری اسـت . از طرفـی مـدیریت بهره برداری از سد و همچنین روشهای تخلیه رسوب و وجود سازه های تخلیه مناسب بعد از جمع شدن رسوبات نقش مهمی را در کمتر شدن رسوبات ورودی به مخزن سد ایفا می کنند .

 

فرمت :pdf

تعداد صفحه :۱۰۰



فهرست مطالب:

چکیده 13
مقدمه 14
فصل اول : خصوصیات فیزیکی ذرات رسوب 15
1 1  مقدمه 16
-2 خصوصیات یک ذره رسوب منفرد 16 -1
1  3  زاویه ایستایی 19
1  4  سرعت سقوط و معادله استوکس 21
1  5  اثر نیروی اینرسی بر روی سرعت سقوط 22
1  6  تاثیر شکل ذره روی سرعت سقوط 23
1  7  خصوصیات آب و رسوب 23
فصل دوم : انواع فرم بستر در رودخانه های آبرفتی 27
-1 فرم بستر در رودخانه های آبرفتی 28 -2
2 - پیش بینی فرم بستر 32 -2
3 - ابعاد فرم بستر 32 -2
4 - آستانة حرکت 33 -2
5 - مقاومت مجاری آبرفتی ( با بستر سست ) در مقابل جریان 33 -2
6 - انتقال رسوب 34 -2
7 - انتقال بار بستر 35 -2
7
8 - انتقال بار معلق 35 -2
9 - انتقال بار کل 36 -2
10 - انتقال رسوب در مجاری با بستر صلب 36 -2
11 - انتقال نامتعادل رسوب با غلظت زیاد 36 -2
12 - مقایسه و ارزیابی توابع انتقال رسوب 37 -2
13 - رسوبگذاری در مخزن 37 -2
2  14  بازیافت ظرفیت ذخیره 43
فصل سوم : روشهای محاسبه میزان بار رسوب 45
-1-3 ارزیابی روابط محاسبه میزان بار رسوب 46
2-3  انواع نمونه بردارها 47
3-3 - انتخاب محل و چگونگی نمونه بردار رسوب 48
4-3 - روشهای اندازه گیری بار بستر 48
-5-3 روشهای محاسبه میزان انتقال رسوبات 49
6-3 - روشهای تعیین بار بستر 51
7-3 - روشهای تعیین بار معلق 51
8-3 - تعیین بار رسوب 53
-9-3 کف کنی 54
10-3 - بالا آمدن بستر 55
11-3 - روش آبشویی رسوبات داخل مخازن سدها 58
فصل چهارم : معیارهای کلی طراحی برای پروژه های انحراف آب از رودخانه 61
-1-4 معیارهای کلی طراحی برای پروژه های انحراف آب از رودخانه 62
8
4  2  سیستم انحراف 67
4  3  مجرا و آبرو در داخل بدنه سد 69
4  4  آبراهه های روباز 70
4  5  انحراف چند مرحله ای 70
4  6  فرازبند 71
4  7 سدهای انحرافی 73
4  8  هدف از ایجاد سد انحرافی 76
4  9  اجزاء اصلی سد انحرافی 76
4  10  عملکرد و وظایف ساختمان دهانه آبگیر 77
4  11  اثر افزایش طول نفوذ در سدهای وزنی و انحرافی 77
4  12  تغییرات شکل بستر رودخانه های طبیعی بعد از انحراف 78
4  13  چگونگی رسوب گذاری رودخانه ای طبیعی در پشت سد انحرافی 78
-14-4 سیستم رسوبگیری 79
-15-4 تخلیه کننده رسوب 80
-16-4 یافتن محل مناسب برای انحراف آب از رودخانه 82
-17-4 محل آبگیری در انحنای جریان
85
-18-4 حوضچه های آبگیر
85
-19-4 طرح اولیه پروژه های کوچک انحراف آب از رودخانه
86
-20-4 سدهای لاستیکی
89
-21-4 جنس سدهای لاستیکی
89
-22 نحوه کار سدهای لاستیکی -4
90
9
-23 مقایسه سدهای لاستیکی با سدهای انحرافی بتنی -4
90
-24 اثر سد لاستیکی بروی ارتفاع دیواره های جانبی 91 -4
-25-4 مقایسه سدهای انحرافی بتنی با سدهای لاستیکی از نظر رسوب زدائی
91
-26-4 مقایسه حوضچه آرامش در سدهای انحرافی بتنی وسدهای لاستیکی
92
-27-4 رسوب در سدهای لاستیکی
92
-28 مقاومت غشاء لاستیکی در برابر جریان توده های رسوبی درشت -4
92
فصل پنجم : نتیجه گیری و پیشنهادات
94
نتیجه گیری
95
پیشنهادات
96
فهرست منابع فارسی
97
فهرست منابع لاتین
98
چکیده انگلیسی
99


دانلود با لینک مستقیم


بررسی رسوب در مخازن سدهای انحرافی

پروژه شبیه سازی مخازن نفتی ( Simulation of oil reservoirs)

اختصاصی از نیک فایل پروژه شبیه سازی مخازن نفتی ( Simulation of oil reservoirs) دانلود با لینک مستقیم و پر سرعت .

پروژه شبیه سازی مخازن نفتی ( Simulation of oil reservoirs)


پروژه  شبیه سازی مخازن نفتی ( Simulation of oil reservoirs)

نسخه کامل و ویرایش شده (با فهرست بندی اتوماتیک)

با فرمت word

فهرست :

  مقدمه
فصل اول :
پدیده مخروطی شدن آب در مخازن نفتی
تولید آب ناخواسته از مخزن
1-منبع آب
2- گرادیان فشار   
راههای ورود آب به چاههای تولیدی
3- نفوذ پذیری نسبی آب
     فصل دوم :
شبیه سازی پدیده مخروطی شدن آب در مخازن نفتی
تئوری
شبیه سازی پدیده مخروطی شدن آب
     بررسی مدل ریاضی جهت شبیه سازی مخروطی شدن
اعمال متدهایی جهت افزایش پایداری سیستم در روش (IMPES):
بررسی مدل بوسیله یک مثال مخروطی شدن آب
فصل سوم :
شبیه سازی  پدیده مخروطی شدن آب در مخازن شکافدار
تئوری
شبکه بندی چاه
بررسی اثر تراوایی ماتریکس بر رفتار مخروطی شدن در مخازن شکاف‌دار
بررسی اثر تخلخل ماتریکس بر رفتار مخروطی شدن در مخازن شکاف‌دار
بررسی اثر تراوایی افقی شکاف بر رفتار مخروطی شدن در مخازن شکاف‌دار
بررسی اثر تراوایی عمودی شکاف بر رفتار مخروطی شدن در مخازن شکاف‌دار
بررسی آنالیز حساسیت روی نتیجه‌های مدل‌سازی
بررسی اثر ویسکوزیته نفت بر رفتار مخروطی شدن در مخازن شکاف‌دار
نتیجه گیری کلی :
فهرست منابع و مآخذ :

 

ABSRTACT

چکیده:

تولید آب از مخازن زیرزمینی نفت در اثر مخروطی شدن پدیده ای است که بطور معمول اتفاق می افتد و هزینه های عملیاتی تولید را افزایش داده و موجب کاهش عملکرد مکانیسم تخلیه و تولید از مخزن می گردد. مخروطی شدن آب در مخازن نفتی تحت رانش آب، پدیده ای پیچیده ای است که باید به آن توجه شود. از آنجایی که مخروطی شدن آب بر بازیافت نهایی نفت تأثیر می گذارد شناخت و پیش بینی رفتار مخازن نفتی در ارتباط با این پدیده حائز اهمیت است. در بررسی پدیده مخروطی شدن و شبیه سازی آن هدف پیدا کردن سه کمیت دبی تولید بحرانی، زمان نفوذ و نسبت آب به نفت تولیدی بعد از زمان نفوذ می باشد. در این تحقیق سعی شده است تا با ایجاد یک مدل از طریق حل عددی معادلات دیفرانسیل حاکم بر مخازن نفتی و پیدا کردن سه کمیت مذکور، رفتار این نوع مخازن را در رابطه با پدیده مخروطی شدن پیش بینی کنیم : همچنین، برای جلوگیری از اتلاف وقت و هزینه بالای مطالعه‌ی مخزن، مدل ساده‌ای برای یک چاه بر اساس ویژگی‌های آن و حرکت جریان به سمت چاه ارائه شده است تا بتواند با سرعت بیشتر و هزینه کم‌تر این پدیده را مورد مطالعه قرار دهد. در این تحقیق، با مدل‌سازی این پدیده‌ها با روش IMPES این نتیجه‌ها حاصل شد که دبی تولید نفت نقش اصلی را در تولید آب دارد. آنالیز حساسیت روی تخلخل شکاف و ماتریکس نشان داد که زمان میان‌شکنی به تخلخل شکاف و برش آب به تخلتخل ماتریکس بیشتر حساس است. همچنین با انجام آنالیز حساسیت روی تراوایی شکاف و ماتریکس، مشخص شد که زمان میان‌شکنی به تراوایی عمودی و افقی شکاف و برش آب به تراوایی افقی شکاف بیشتر حساس است. نتیجه‌های این مدل‌سازی با نتیجه‌های حاصل از مطالعه جامع مخزن با CMG مقایسه شده است.که دقت وقابل قبول بودن ان را تایید می کند.


دانلود با لینک مستقیم


پروژه شبیه سازی مخازن نفتی ( Simulation of oil reservoirs)

دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

اختصاصی از نیک فایل دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران


دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:122

فهرست مطالب :

برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران. ۱
مقدمه. ۳
تعریف مخزن شکاف دار. ۵
فرایند جا به جایی نفت با گاز یا با آب تحت « ریزش ثقلی»۸ ۶
۱-۱٫ میدان نفتی فهود ( عمان )۳۷ ۱۸
۲-۱٫ میدان نفتی «ابکتون» (مکزیک)۴۱ ۱۹
۳-۱٫ میدان نفتی «اسپرابری» (امریکا)۴۲ ۲۰
۴-۱٫ بررسیهای آزمایشگاهی۴۴ ۲۱
۱-۲٫ تاریخچه مختصر بررسیهای میدانی. ۲۴
۱-۱-۲٫ میدان نفتی « زلتون» ( ناصر)۴۷ ۲۴
۲-۱-۲٫ میدان نفتی « قوار »۴۹ ۲۵
۳-۱-۲٫ میدان نفتی « انتظار»۵۲ ۲۶
۴-۱-۲٫ میدان نفتی « لیک ویو»۵۵ ۲۶
۵-۱-۲٫ میدان نفتی « فهود»۵۷ ۲۷
۶-۱-۲٫ میدان نفتی هفتکل۵۹ ۲۸
۷-۱-۲٫ میدان نفتی « هندیل »۶۱ ۲۹
۸-۱-۲٫ میدان نفتی « ابکتون »۶۳ ۳۰
۱۰-۱-۲٫ « دکسترا»۷۵ ۳۱
۲-۲٫ سایر تجربههای آزمایشگاهی. ۳۳
۱-۲-۲٫ آزمایش« ترویلگر و همکاران»۷۹ ۳۳
۳-۲-۲٫ آزمایشهای تخلیه نفت با روش گرانروی توسط انستیتو نفت فرانسه۸۳ ۳۴
۴-۲-۲٫ آزمایشهای سروش و سعیدی۸۶ ۳۶
۵-۲-۲٫ آزمایشهای فشار موئینگی توسط انستیتو نفت فرانسه۹۰ ۳۶
۷-۲-۲٫ آزمایشهای «هاگورت»۹۳ ۳۸
۳٫ مهم ترین عوامل اقتصادی بازیافت نفت از مخازن نفتی ایران کدامند؟. ۴۵
۱-۳٫ تزریق گاز غیر امتزاجی. ۴۶
۱-۱-۳٫ تزریق گاز هیدروکربوری.. ۴۶
۲-۱-۳٫ تزریق گاز غیر هیدروکربوری.. ۵۰
۱-۲-۱-۳٫ تزریق هوا یا تزریق گاز ازت غیر خالص…. ۵۳
۲-۳٫ تزریق گاز امتزاجی. ۵۴
۳-۳٫ تزریق «آب توان یافته»۱۲۷ ۵۷
۴-۳٫ حفاری افقی و بهبود تجهیزات روی زمینی. ۶۱
۱-۴-۳٫ بهبود تجهیزات روی زمینی. ۶۲
۱-۴٫ الگوی بهینه تخصیص گاز. ۶۴
۲-۴٫ بازار آینده نفت.. ۶۴
۶٫ جمع بندی و نتیجه گیری.. ۶۹
منابع. ۷۲

چکیده :

ایران دارای یکی از بزرگ ترین ذخایر « نفت در جا »1 در دنیاست که حجم اولیه آن بیش از 450 میلیارد بشکه تخمین زده می­شود. از این مقدار حدود 400 میلیارد بشکه در مخزن « شکاف دار»2 و بقیه آن در مخازن « تک تخلخلی »3 قراردارند.

از این مجموعه بیش از 91 میلیارد بشکه نفت خام یعنی بیش از 20 درصد قابل برداشت است. به علاوه باید توجه داشت که متوسط بازیافت نفت خام از مخازن شکاف دار تا حدودی کمتر از مخازن تک تخلخلی با همان خصوصیات است.

هدف اصلی این نوشته بررسی بازیافت اقتصادی و قابل قبول نفت از این مخازن عظیم است. این امر نه­ تنها به سود کشور ایران است بلکه سایر کشورهای جهان نیز از آن منتفع می­شوند. برای بررسی این موضوع کلیدی لازم است هر یک از عوامل اصلی مهندسی مخازن نفت به شرح زیر مطالعه شوند.

  • چرا ضریب بازیافت نفت از مخازن ایران در مقایسه با نقاط دیگر جهان پایین تر است؟
  • موقعیت عملی بازیافت نفت از مخازن « تک تخلخلی » و « شکاف دار» ایران چگونه است؟
  • مهم ترین عوامل اقتصادی بازیافت بیشتر نفت از مخازن ایران کدام­اند؟
  • حداکثر برداشت از نفت در جا با در نظر گرفتن فرایند تولید اولیه و ثانویه به چه میزان است؟
  • چگونه می­توان سرمایه گذاری لازم جهت تزریق گاز مورد نیاز به میزان 20 میلیارد پای مکعب در روز به مخازن نفتی را تامین کرد؟

برای بررسی ظرفیت­های ممکن بازیافت و استحصال نفت از مخازن کشف شده موجود، مطالعه گسترده مخازن نفت و گاز کشور چه در خشکی و چه در مناطق دریایی لازم به نظر می­رسد.

به منظور انجام این مطالعات به زمان، نیروی انسانی متخصص و حمایتهای مالی نیازمندیم. این کار لزوماً باید از طریق «مدل سازی مفهومی »4 از تمام مخازن موجود کشور انجام گیرد. با انجام این روش می­توان کلیه مخازن نفت و گاز کشور را طی دوره زمانی قابل قبول و با هزینه معقول مطالعه نمود، و این در حالی است که از کیفیت کار نیز کاسته نخواهد شد.

قبل ورود به مباحث اصلی، بهتر از به طور اجمال فرق­های اساسی بین مخازن شکاف­دار و تک تخلخلی را بیان کنیم. تفاوتهای اصلی مخازن نفتی شکاف­دار و تک تخلخلی به شرح زیر خلاصه می­شود

تعریف مخزن شکاف دار

مخزن شکاف دار مخزنی است که در ساختار آن شکستگی یا ترک وجود داشته باشد ضمن آن که این شکاف­ها شبکه­ای را ایجاد کنند. این شبکه می­تواند تمام یا بخشی از مخزن نفت را شامل شود. در ساختار این شبکه هر یک از سیال­ها می­توانند درون شبکه شکاف­ها از هر نقطه به نقطه دیگر جریان یابند. مثال­های بارز مخازن شکاف­دار در ایران به مفهوم کامل آن، مخازن نفتی هفتکل، گچساران و آغاجاری است. مخازن کرکوک در عراق و « کان ترل»5 در مکزیک از نمونه­های دیگر این مخازن به شمار می­روند. نمونه­های مخازن شکاف دار غیر کامل، مخازن بی بی حکمیه، بینک، مارون و اهواز است. به بیان دیگر، در مخازن مذکور وجود شبکه­ شکستگی­های نامنظم در مخزن، کل ساختار مخزن را شامل نمی­شود.

مخازن شکاف دار، مرکب از سنگهای شکسته با فضاهای کوچک خالی بین آنها است و این شکستگی­ها به صورت منظم و غیرمنظم تشکیل شده­اند. در این گونه مخازن « حفره­ها »6 و حتی غارهای بزرگ می­تواند نیز وجود داشته باشد. فواصل شکاف­های افقی معمولاً از مواد غیر قابل نفوذ پر شده­اند، در حالی که فواصل شکاف­های عمودی غالباً خالی هستند. بنابراین چنین مخازنی دارای دو گونه بریدگی است: یکی شکافها یا شکستگی­های باز و توخالی و دیگری لایه­های افقی نازک غیر قابل نفوذ.

« بلوک­های ماتریسی»7 بر حسب فاصله بین دو گسستگی تعریف می­شوند. این گسستگی­ها می­توانند فاصله بین دو لایه قابل نفوذ یا دو لایه غیر قابل نفوذ افقی و یا فاصله بین دو لایه قابل نفوذ و غیر قابل نفوذ باشند.

فرایند جا به جایی نفت با گاز یا با آب تحت « ریزش ثقلی»8

جا به جایی نفت چه در مخازن تک تخلخلی و چه در مخازن شکاف دار شبیه یکدیگر است9، هر چند که مکانیسم تزریق گاز یا آب در هر یک از این دو نوع مخزن با یکدیگر متفاوت است. به بیان دیگر، در مخازن شکاف­دار به علت نفوذ­پذیری کم سنگ مخزن، بخشی از گاز یا آب تزریقی وارد سنگ مخزن شده و بقیه گاز یا آب تزریقی به ناچار از طریق شکافها سنگ­های با نفوذ­پذیری کم را دور می­زند، در حالی که در مخازن تک تخلخلی، سیال تزریق شده از خلل و فرج به هم پیوسته عبور می­کند.

به هر حال جریان سیال تزریقی چه در مخازن تک تخلخلی و چه در مخازن شکاف­دار از قوانین خاص خود تبعیت می­کند، ولی سازوکار حاصل در هر دو حالت تقریباً یکسان است.

وجود شکستگی­های موجود در مخازن شکاف­دار در مقایسه با مخازن تک تخلخلی دارای ویژگیهای زیر است:

الف ـ فرایند « ریزش ثقلی» و در مخازن شکاف­دار در مقایسه با مخازن تک تخلخلی سرعت نسبی بالاتری دارد. دلیل این امر آن است که نفوذپزیری بسیار پایین تر سنگ مخزن در مقایسه با نفوذپذیری شکافها موجب می­شود که سطح گاز و نفت در شکافها پایین تر از سطح آب و گاز در بلوک­های ماتریسی نفتی قرار گیرد. به ترتیبی مشابه می­توان گفت که سطح آب و نفت در شکافها از سطح آب و نفت در بلوکهای ماتریسی بالاتر است.

بر طبق آزمایشهای انجام شده در مخازن تک تخلخلی با نفوذپذیری مثلاً یک میلی دارسی، جریان « ریزش ثقلی» به زمان بسیار طولانی تری در مقایسه با مخازن شکاف­دار با همان نفوذپذیری نیاز دارد.

ب ـ در سیستم مخازن شکافدار، نفت تولید شده از سنگ مخزن، در فاصله­های دورتری از « چاه­های تولیدی » به دست می­آید. لذا به دلیل بهره­وری بالا در مخازن شکاف­دار، فاصله چاه­های تولیدی از یکدیگر به مراتب بیش از فواصل چاه
­های تک تخلخلی در نظر گرفته می­شود.

ج ـ وجود شکافها، به تفکیک گاز یا آب از نفت کمک می­کند. این امر باعث می­شود که میزان گاز اضافی یا آب اضافی قابل تولید در ستون نفت، کمتر شده و بدین ترتیب انرژی مخزن با بازدهی بیشتری حفظ می­شود.

د ـ فرایند « همرفت حرارتی »10 در مخازن شکاف­دار موجب ایجاد نفت اشباع نشده در ستون نفتی می­شود، حتی هنگامی که فشار مخزن به پایین تر از نقطه اشباع برسد. این فرایند را اطلاحاً « کاهش فشار نقطه اشباع »11 می­نامند. در نتیجه تا وقتی که عملاً گازی در مخزن تزریق نمی­شود، آثار ریزش ثقلی افزایش می­یابد؛ در غیر این صورت گاز ایجاد شده در درون سنگ، نفوذپذیری سنگ را کاهش می­دهد.

ه ـ وجود شکاف­ها باعث یکنواخت تر شدن فشار آب یا گاز یا نفت در مخازن شکاف­دار می­شود، لذا سطوح آب و نفت یا گاز و نفت یکنواخت تر خواهد شد.

و ـ فرایند اشاعه « گاز در گاز »12 یا « نفت در نفت »13 و یا « گاز در نفت»14 موجب به تعادل رسیدن ترمودینامیکی هر چه سریع تر سیالات موجود در مخزن می­شود. به همین دلیل است که در جریان شبیه سازی این مخازن، فرایندهای «همرفت ـ اشاعه »15 را نمی­توان نادیده گرفت.

با توجه به مزیت­های فوق، مخازن شکاف­دار با نفوذپذیری کم را می­توان از نظر تجاری، با سرعت زیاد و هزینه­ها ی نسبتاً پایین تر از مخازن تک تخلخلی با همان مشخصات تخلیه کرد.

مخازن شکاف­دار دارای معایب زیر نیز هستند:

الف ـ وجود گسستگی ­های افقی باز یا بسته، تاثیر فرایند ریزش ثقلی بین گاز و نفت یا نفت و آب را در مقایسه با مخازن تک تخلخلی کاهش می­دهد.

این امر در مقایسه با مخازن تک تخلخلی نشان می­دهد که بازیافت نفت با یک ضخامت نفتی مساوی از یک بلوک نفتی در مخزن شکاف­دار بازیافتی کمتر از مخازن تک تخلخلی پیوسته دارد. این امر به دلیل وجود « ارتفاع ناحیه نگهدارنده »16 و « خصوصیت موئینگی سنگ مخزن»17 است. در واقع در مخازن شکاف­دار، ضخامت کل سنگ مخزن در جهت عمودی به قطعات یا بلوکهای جدا از هم تقسیم می­شود و این بلوک­ها به طور مشابه با خصوصیاتی متفاوت تکرا می­شوند. در صورتی که در مخازن تک تخلخلی در وضعیت فوق این گونه قطعات جدا از هم وجود ندارد. لذا میزان نفت غیر قابل استحصال در مخان تک تخلخلی بیش از مخازن شکافدار بوده و در حالیکه سرعت استحصال نفت در مخازن شکاف­دار نسبت به مخازن تک تخلخلی در شرایط مساوی بالاتر است.

بعضی از افراد به دلیل عدم شناخت مکانیسم بازیافت نفت در مخازن شکاف­دار استنباط نادرستی دارند. و تصور می­کنند که در مخازن شکاف­دار همواره یک فشار « موئینگی پیوسته»18 درون بافتی وجود دارد. تولید از مخازن شکاف­دار در کشورهای مختلف نشان می­دهد که در بهره­برداری دراز مدت از آنها، فرایند « موئینگی پیوسته » در این گونه مخازن قابل توجه نیست؛ برای مثال، اگر فشار موئینگی درون بافتی پیوسته­ای در میادین هفتکل یا آغاجاری وجود می­داشت میزان بازیافت نفت از آنها به وسیله گاز به 60 درصد می­رسید، در حالی که ضریب بازیافت نفت در میدان هفتکل در بخش گازی آن به حدود 28 درصد و در آغاجاری به 35 درصد می­رسد.

ب ـ کاربرد روش امتزاجی جهت بالا بردن ضریب بازیافت نفت در مخازن شکاف­دار، مستلزم استفاده از حجم زیادی کندانسه است که این امر از نظر اقتصادی توجیه پذیر نیست.

بنابراین نتیجه می­گیریم که فرایند جا به جایی نفت از طریق گاز یا آب در مخازن شکاف­دار و تک تخلخلی مشابه یکدیگر است، با این تفاوت که بازیافت نفت در مخازن شکاف­دار به دلیل شکستگی سنگ مخزن و کوتاه شدن ارتفاع بلوک­های ماتریسی کمتر از مخازن تک تخلخلی است.

  1. چرا ضریب بازیافت نفت از مخازن ایران در مقایسه با نقاط دیگرجهان پایین تر است؟

قبل از ورود به این بحث لازم است مکانیسم­های جا به جایی نفت را به دو روش زیر مورد بررسی قرار دهیم.

الف ـ « جا به جایی نفت به طرف جلو»19 یا به عبارت بهتر « جا به جایی با استفاده از فشار»20

ب ـ جا به جایی از طریق « ریزش ثقلی» یا به عبارت بهتر « جا به جایی به صورت طبیعی »21

که بر اثر اختلاف وزن مخصوص بین مایع تزریقی و نفت ایجاد می­شود. این فرایند در یک سیستم متخلخل مرتفع به صورت فیزیکی اندازه­گیری شده22، و به لحاظ نظری نیز مشخص شده است23 که اختلاف فاحشی بین بازیافت نفت در دو روش فوق الذکر وجود دارد. بازیافت نفت با روش کندتر « ریزش ثقلی» از بازیافت نفت با روش سریع « جا به جایی رو به جلو» بیشتر است.

اما در اوایل دوره تولید، روش بازیافت نفت از طریق جا به جایی سریع رو به جلو از روش جریان نفت از طریق ریزش ثقلی، عملکرد بهتری دارد. بر اساس میزان تزریق، بازیافت نفت از طریق ریزش ثقلی می­تواند تا دو برابر روش جا به جایی رو به جلو یا « استفاده از فشار» باشد24.

از مجموعه بررسی­ها چنین بر می­آید که باز یافت نفت در مخازن تک تخلخلی اصولاً تابعی است از نفوذپذیری سنگ مخزن، سرعت جا به جایی، فشار موئینگی و میزان « سیال دوستی»25 سنگ مخزن. در صورتی که سایر عوامل فوق ثابت فرض شوند، میزان نفت اشباع شده باقیمانده تابعی از سرعت جا به جایی نفت خواهد بود. در این صورت در حالت جا به جایی از طریق ریزش ثقلی، میزان نفت باقی مانده کمتر و در حالت جا به جایی با فشار یا رو به جلو، میزان نفت باقی مانده بیشتر خواهد بود.

قابل ذکر است که در مخازن شکاف­دار، شکستگی­ها به مثابه محدود یا اضلاع بلوکها عمل می­کند و به همین دلیل فرایند جا به جایی رو به جلوی نفت در چنین سیستمی به جز در حوزه­های خیلی نزدیک به چاه­های تزریقی کارامد نیست.

فرایند سریع جا به جایی نفت به طرف جلو، همرا با فشار موئینگی چندان قابل توجه نیست، زیرا نیروهای « گرانروی»26 در حال حرکت از نیروهای ناشی از فشار موئینگی بیشتر است. این در حالی است که در فرآیند جا به جایی بر اساس ریزش ثقلی، به علت آهسته بودن جا به جایی، فشار موئینگی نقش بارزی در نگهداری نفت در بلوکها ایفا می­کند. از طرف دیگر، سرعت بالای تزریق در سیستم تک تخلخلی موجب می­شود که سیال تزریقی از بخش میانی خلل و فرج­های کوچک عبور نموده و لذا نفت قابل ملاحظه­ای بر جای می­گذارد.

برای مقایسه عوامل کاهش بازیافت نفت ازمخازن ایران با مخازنی که دارای بازیافت بالاتری هستند لزوماً باید این مخازن را تحت شرایط یکسان مقایسه کرد. به عبارت دیگر، ناچاریم پرتقال را با پرتقال و سیب را با سیب مقایسه کنیم، نه اینکه سیب را با پرتقال.

به عنوان مثال ما نمی­توانیم میدان نفتی «لالی»27 ایران را با 10 درصد باز یافت با مخزن «لیک ویو»28واقع در امریکا با77 در صد بازیافت مقایسه کنیم. مخزن لالی مخزنی سنگ آهکی شکاف دار با میانگین نفوذ پذیری 1/0 میلی دارسی با فشار موئینگی بالا و عمدتاً «نفت دوست»29 است، در صورتی که مخزن لیک ویو30 مخزنی تک تخلخلی از جنس سنگ ماسه­ای با نفوذپذیری 2000 میلی دارسی و با فشار موئینگی بسیار پایین و «آب دوست»31 است. اگر مخزن لالی در امریکا کشف و از آن بهره­برداری می­شد حتی 10 درصد نفت آن را بهره­برداری نمی­کردند زیرا آنها با استفاده از روش سریع در بهره­برداری، این میدان را بسیار کمتر از آنچه که می­توانست تولید کند به اتمام میرساندند.

مثال مناسب دیگر مقایسه مخزن شکاف دار «اسپرا­بری»32 در امریکا با میانگین نفوذ پذیری 1/0 میلی دارسی با میدان نفتی هفتکل در ایران است.این دومیدان دارای نفوذ پذیری تقریباً یکسان هستند، اما میزان نسبی تولید روزانه از میدان نسبی هفتکل به مراتب پایین تر از میدان اسپرابری در ابتدای بهره­برداری می­باشد.

ضریب بازیافت نفت به صورت طبیعی در هفتکل حدود 22 درصد است در صورتی که ضریب باز یافت طبیعی نفت در میدان اسپرابری کمتر از 8 درصد بوده است، ولی آنها بیش از 3000 حلقه چاه در ایران حفر کردند، در حالی که میزان نفت در جا در این میدان 2 میلیارد بشکه و میزان نفت در جا در میدان هفتکل حدود 7 میلیارد بشکه است و حال آنکه تنها حدود 40 حلقه چاه در آن حفر شده است. پس از یک دوره کوتاه برداشت نفت به صورت طبیعی از میدان اسپرابری، برای مدت طولانی آب و متعاقب آن برای مدت کوتاهی co2 تزریق شد، در نتیجه کل بازیافت نفت از مخزن فوق تا کنون حدود 12 درصد بوده است.

در صورتی که فشار میدان نفتی هفتکل را به حد اولیه آن در تاج مخزن یعنی PSI 1420 33 رسانده شود، ضریب بازیافت نفت این مخزن به بیش از 27 درصد می­رسد. از سوی دیگر اگر می­توانستیم فشار مخزن هفتکل را به حد اولیه فشار مخزن اسپرابری یعنی معادل PSI2250 افزایش دهیم، ضریب بازیافت نفت مخزن فوق به حدود 35 درصد می­توانست برسد.

تفاوت اصلی بازیافت نفت در میدان هفتکل و اسپرابری نشان دهنده آن است که میدان هفتکل اولاً با سرمایه­گذاری بسیار پایین تر به نحو بهتر و صحیح تری بهره­برداری شده است و ثانیاً تخلیه سریع از مخازن شکاف­دار، همواره افت شدیدی در بازیافت نفت به دنبال دارد.

نمونه­های بالا نشانگر آن است که مخازن ایران با حداکثر ضریب بازدهی، تحت شرایط تخلیه طبیعی قرار داشته­اند و نباید آنها را با مخازنی که از ویژگی­های دیگری برخوردارند مقایسه کرد. در حقیقت ضریب بازیافت نفت در مخازن مشابه در کشور امریکا یا هر جای دیگر، فاصله بسیار زیادی با ضریب بازیافت نفت در ایران دارد، چنان که به نمونه­ای از آن در مورد هفتکل اشاره شد. بنابراین ضریب بازیافت نفت در ایران را نباید با هیچ جای دیگر جهان که دارای خصوصیات مخزنی متفاوت و دارای طبیعت تولیدی خاص خود است و یا از ویژگی­های دیگری برخوردارند مقایسه کرد.

با وجود این، در مطالعه تطبیقی ضرایب نفت از مخازن شکاف­دار ایران با مخازن مشابه در سایر نقاط جهان باید به موارد زیر توجه کرد.

الف ـ کشورهایی که دارای مخازن شکاف­دار از جنس سنگ آهک هستند ( مشابه آن چه در ایران وجود دارد ) غالباً در تملک شرکتهای دولتی است، مانند کشورهای مکزیک، عراق، عمان، لیبی و سوریه. این کشورها اطلاعات کافی در مورد ذخایر نفتی خود منتشر نمی­کنند، به ویژه در مورد ضریب بازیافت نفت از آنها.

ب ـ مخازن نفت کشورهای فوق عموماً شکاف دار است، اما برای مثال مخازن نفتی کشور مکزیک غالباً دارای فشار بسیار بالاتری از « فشار نقطه اشباع»34 است و بخش عمده­ای از بازیافت نفت ناشی از جریان انبساط سیال در سنگ مخزن است، در صورتی که بیشتر میدان­های نفت ایران از ابتدا در حدود فشار نقطه اشباع هستند و از انبساط سیال بسیار کمتری برخوردارند.

بنابراین برای مقایسه ضرایب بازیافت نفت از مخازن مکزیک با مخازن ایران در شرایط تقریباً یکسان، باید میزان بازیافت نفت را از فشار نقطه اشباع تا پایان طول عمر مخزن محاسبه و مقایسه کرد.

ج ـ بعضی از مخازن کشورهای فوق الذکر، حاوی غارهای بزرگ است مانند میدان نفتی کرکوک در عراق35 و یا قوار در عربستان و بعضی دیگر حاوی «حفره­های کوچک»36 مانند بسیاری از ذخایر نفتی مکزیک. ضریب بازیافت نفت از این مخازن به دلیل وجود غارهای بزرگ نفتی یا حوزه­ها به مراتب بیش از ذخایر مشابه آن در ایران است.

د ـ حدود 15 مخزن شکاف­دار در قسمت شمال شرقی سوریه وجود دارد که دارای نفت تقریباً سنگین و فشار کم است. این مخازن به وسیله متخصصین شوروی سابق و بدون تجربه کافی مورد بهره­برداری قرار گرفته بود. میزان بازدهی این مخازن کمتر 16 درصد گزارش شده است که نسبت به موارد مشابه آن در ایران پایین تر است.

ه ـ در بسیاری از نشریات نفتی به میزان « تولید ـ فشار» مخازن مختلف اشاره می­شود، ولی هیچ گاه از بازیافت نهایی دراین مخازن ذکری به میان نمی­آید. این گونه نشریات معمولاً به میزان نفتی که در مدت زمانی معین استخراج می­شود تکیه می­کنند، بنابراین مرجع هستند و کافی در زمینه مقایسه مخازن وجود ندارد.

از توضیحات بالا پیچیدگی مسئله تا حدودی روشن می­شود. به هر حال بر اساس اطلاعات منتشر شده موجود در مورد مخازنی که تا حدودی مشابه مخازن ایران هستند می­توانیم از روش­های درجه بندی استفاده کنیم تا تخمین بهتری از ضریب بازیافت به دست آوردیم. در ذیل به چند نمونه دیگر از این موارد اشاره می­کنیم.

و...

NikoFile


دانلود با لینک مستقیم


گزارش کارآموزی رشته تاسیسات اصول ساخت مخازن تحت فشار

اختصاصی از نیک فایل گزارش کارآموزی رشته تاسیسات اصول ساخت مخازن تحت فشار دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی رشته تاسیسات اصول ساخت مخازن تحت فشار


گزارش کارآموزی  رشته تاسیسات اصول ساخت مخازن تحت فشار

دانلود گزارش کارآموزی  رشته تاسیسات اصول ساخت مخازن تحت فشار بافرمت ورد وقابل ویرایش تعدادصفحات 38

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی


این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد

مقدمه : 

همانطور که می دانیم مخازن تحت فشار از جمله تجهیزاتی هستند که نه تنها در شاخه نفت و پتروشیمی بلکه در اغلب صنایع اصلی نظیر نیروگاه و حمل و نقل از کاربرد ویژه و قابل توجهی برخوردار بوده و از اینرو توجه به مقوله طراحی و ساخت آنها از اهمیت ویژه ای برخوردار است .  آنچه در این مقاله بدان پرداخته شده است, بیشتر جنبه راهنمائی داشته و هدف ارائه مطالبی است که به نظر نویسنده برای طراحی و ساخت یک مخزن تحت فشار با توجه به استاندارد  ASME BOILER& PRESSURE VESSLES CODE(SEC.VIII, DIV.1)  لازم و ضروری بوده و طبعا نمی تواند تمامی نکته ها و مسائل حاشیه ای این موضوع را در بر داشته باشد . مطالب ارائه شده به ترتیب شامل آشنائی با تعاریف اولیه, انتخاب مواد, و نکات مهم در فرآیند ساخت یک مخزن تحت فشار از نگاه تولید و مسائل مربوط به آن است .  جهت آشنائی بیشتر با سرفصلهای مندرج در استاندارد ASME و امکان مراجعه به مباحث تکمیلی در هر زمینه در اینجا به معرفی عناوین مزبور میپردازیم :  U – Introduction  UG – General requirements for all methods of construction and all materials  UW – Requirements for pressure vessels fabricated by welding  UF - Requirements for pressure vessels fabricated by forging  UB - Requirements for pressure vessels fabricated by brazing  UCS - Requirements for pressure vessels constructed of carbon and low alloy steels  UNF - Requirements for pressure vessels constructed of nonferrous materials  UHA - Requirements for pressure vessels constructed of alloy steel  UCI - Requirements for pressure vessels constructed of cast iron  UCL - Requirements for welded pressure vessels constructed of material with corrosion resistant integral cladding , weld metal overlay cladding , or with applied lining  UHL - Requirements for pressure vessels constructed of ferritic steels with tensile properties enhanced by heat treatment  ULW - Requirements for pressure vessels constructed by layered construction  ULT – Alternative rules for pressure vessels constructed of materials having higher allowable stresses at low temperature .  تعاریف اولیه :  مخزن تحت فشار : بطور کلی هر مخزنی که اختلاف فشار داخلی و خارجی آن برابر و یا بیشتر از 15 psi ( و کمتر از 3000 psi  ) بوده , قطر داخلی آن از 6 in بیشتر و دارای حجم 120 گالن باشد یک مخزن تحت فشار نامیده می شود و شامل مقررات مندرج در ASME SEC. VIII DIV.1 میگردد ( جهت کسب اطلاعات بیشتر به پاراگراف U-1 مراجعه شود ) .  در عین حال یادآور می شود که توجه به شرایط عملکردی و محیطی مخزن ( اعم از قرار گرفتن در سرویسهای خطرساز و یا آتش گیر ) میتواند در نحوه طراحی، ساخت ، آزمایشات و نهایتا کیفیت کاری مورد نیاز جهت تعیین عملکرد مخزن در سرویسهای خاص بهره برداری تاثیر به سزائی داشته باشد .  فشار و دمای کاری : فشار و دمایی است که مخزن تحت آنها به عملکرد عادی خود می پردازد .  فشار طراحی ( UG-21 ) : فشاری است که جهت تعیین حداقل ضخامت مجاز برای اجزاء مختلف مخزن تحت فشار در نظر گرفته می شود و معمولا 10%  و یا 30 psi ( هر کدام که بزرگتر باشد) بیشتر از فشار عملیاتی آن می بشد . چنانچه مخزن دارای ارتفاع قابل توجهی باشد ( بیشتر از 10 متر ) لازم است که فشار استاتیکی ناشی از وزن سیال نیز به رقم مزبور اشافه گردد . در مورد مخازنی که بطور معمول در شرایط خلاء کار می کنند و یا اینکه امکان خلاء برای آنها محتمل است باید طراحی با در نظر گرفتن پدیده خلاء کامل صورت پذیرد .  درجه حرارت طراحی ( UG-20) : این پارامتر نقش مهمی در طراحی یک مخزن تحت فشار ایفا می کند چرا که مستقیما با مقدار تنش مجاز فلز بکار رفته در ساخت مخزن ارتباط دارد . به عنوان یک پیشنهاد می توان برای مخازنی که فعالیت آنها در محدوده   قرار دارد بر اساس RATING فلنجهای بکار رفته در آنها اقدام به تعیین درجه حرارت طراحی نمود چرا که حداکثر تنش مجاز برای فولادهای کربنی و کم آلیاژ در محدوده فوق عمدتا ثابت است . برای مخازن با فولاد کربنی که شرایط دمائی بهره برداری از آنها نزدیک به محیط اطراف می باشد تعیین حداقل درجه حرارت شکست ترد همواره وجود خواهد داشت . یادآوری میشود که آیین نامه در هیچ حالتی اجازه استفاده از درجه حرارت بالاتر از   1000 برای فولادهای کربنی و   1200 برای فولادهای کم آلیاژ را نمی دهد .  حداکثر فشار کاری مجاز   (UG-98 ) : فشاری است که تحت آن فشار ، ضعیفترین عضو مجموعه به نقطه نهائی تنش تسلیم خود می رسد و این در حالی است که مخزن در شرایط ذیل قرار داشته باشد :  خوردگی ، دمای طراحی ، وضعیت جغرافیائی طبیعی ، تاثیر بار گذارهای گوناگون از قبیل باد ، فشار خارجی و فشار هیدرواستاتیک .  معمولا سازندگان مخازن تحت فشار مقدار M.A.W.P را با توجه به مقاومت عدسی و یا پوسته مخزن تخمین می زنند و اجزاء کوچک مثل فلنج یا دریچه ها را مبنای محاسبه قرار نمی دهند .  عبارت MAWP (new & cold) یکی از رایج ترین اصطلاحات در این زمینه بوده و اشاره به شرایط ذیل دارد :  •    New ( بدون خوردگی )  •    Cold ( فاقد شرایط دمای طراحی – در دمای اتاق )  بنابراین با توجه به تعریف اصلی MAWP خواهیم داشت :  MAWP    <   MAWP فشار تست هیدرواستاتیک ( UG-99) : فشار این تست 5/1 برابر فشار طراحی و یا مساوی با MAWP در نظر گرفته میشود . البته با احراز شرایط Addenda 99  میتوان فشار مورد نظر را 3/1 برابر فشار طراحی نیز در نظر گرفت :  ماکزیمم تنش مجاز ( UG-23) : مقدار این کمیت بستگی به جنس ماده بکار رفته در ساخت مخزن داشته و مستقیما با خواص مکانیکی ماده تشکیل دهنده مخزن در ارتباط است . به عنوان مثال ، کمیت مورد نظر برای ماده SA 516 Gr. 70 بابر با  17500 psi ( psi 20000 با توجه به شرایط  Addenda 99 ) می باشد .


دانلود با لینک مستقیم